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Abstract

Most macroeconomic models, view economic outcomes as being generated by a combina-
tion of endogenous and exogenous dynamic forces. In particular, the exogenous forces are
generally modeled as a set of independent dynamics processes. In this paper we begin by
showing that this dual dynamic structure is sufficient to identify the entire set of structural
impulse responses inherent to any such model. No extra restrictions are needed. We then
use this result to suggest how it can be used to evaluate common SVAR restrictions (impact
restrictions, long run restrictions and proxy-VAR).
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1 Introduction

Macroeconomists are often interested in knowing how the economy reacts to different types of
shocks (see Ramey (2016) and Stock and Watson (2017) for very detailed accounts of the recent
macroeconomic literature). There are two main approaches to look at this issue. On the one
hand, one can build a fully specified Dynamic Stochastic General Equilibrium (DSGE) model,
estimate it using full information methods (see e.g. Smets and Wouters (2007), Christiano
et al. (2010) and Lindé et al. (2016)), and look at its implied impulse response functions (IRF).
These IRF are generally referred to as structural impulse responses. The advantage of such
an approach is that the identification of shocks is generally granted (see e.g. Canova and Sala
(2009), Iskrev (2010), Komunjer and Ng (2011)), given the many restrictions imposed by the
(generally small scale) structural model. One caveat though —the flip side of the same coin— is
that a DSGE model imposes many restrictions on the data and, consequently, is prone to mis-
specification. On the other hand, one can follow the Structural Vector Autoregressive (SVAR)
literature (see Section 4 in Stock and Watson (2016) and Kilian and Lütkepohl (2016) for a
complete review) and impose a more limited set of identifying restrictions —restrictions more
loosely motivated by theory or alternatively motivated by institutions— to derive structural
impulse responses using a VAR.1 SVARs are less prone to mis-specification, but mapping their
implications into the language of models and exogenous structural shocks is not uncontroversial.

It is important to note that the SVAR approach is aimed at obtaining the same objects than
those obtained using a DSGE, that is, it is aimed at recovering structural impulse responses
that can be interpreted as being the outcome of an economy subjected to particular exogenous
driving forces. It is this last observation that we want to exploit in this paper. In particular,
we will show that when a VAR is viewed as the reduced form of a DSGE model, then one
can immediately obtain the full set of structural impulses responses without the need of any
additional identifying restrictions. Because of this property, most identifying restrictions used
in the SVAR literature can be visually evaluated or formally tested. For instance, this allows for
the evaluation of the variety of identifying restrictions imposed in SVARs (Short-run, Long-run,
proxy-variables …).

Dynamic Identification. Identification is best understood from the simple recognition that
IRF implied by DSGE models reflect both propagation mechanisms associated with the func-
tioning of the economy as well as external dynamics associated with the exogenous driving
forces. For these exogenous driving forces to have a clear structural interpretation, it is usually
assumed that the exogenous processes are linearly independent, both contemporaneously and
over time. The fact that the processes for the exogenous driving forces are restricted is key. For
example, a common assumption is that the exogenous driving forces are governed by linearly
independent AR(1) processes. As we shall show, because DSGE models share this structure,
one can recover structural IRF directly from the implied VAR without the need of any of the

1We use the generic term VAR, which, in our case, also includes Vector Error Correction Models (VECM).
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additional assumption on the loading of the shocks used in the SVAR literature. In other words,
the specification of the lag structure and the set of variables of a SVAR is sufficient to identify
a set of structural shocks. No additional assumptions are needed to obtain the set of structural
IRF. Because it explicitly makes use of restrictions on the dynamic structure of the underlying
model, we dub that particular SVAR a “D-SVAR”. By dynamic structure, we mostly mean
the process of the exogenous forcing variables in the model, although the state variables and
the lag structure also (obviously) need to be specified. By identification of structural shocks,
we mean that there generically exists a unique2 vector of mutually orthogonal shocks in the
D-SVAR that satisfies the restrictions imposed by the dynamic structure of the DSGE model.
In loose and over-simplified terms, if the economy is moved by exogenous variables that follow
linearly independent AR(1) processes, then the economy follows a D-SVAR and identification
of structural shocks is granted. This theoretical result will be shown in Section 3.

Testing commonly used SVAR restrictions. It is worth mentioning that the structural
shocks identified by our D-SVAR approach remain unlabelled (nothing in the identification as-
signs a name (technology, fiscal, etc…) to a structural shock). While standard SVAR restrictions
(impact, long-run, sign …) can be used to label them ex-post, our approach can also be used to
test these latter restrictions.

To fix ideas, consider the bi-variate environment examined in the seminal paper by Blan-
chard and Quah (1989). This paper aimed at deriving the impulse responses associated with
supply and demand shocks. The identification restriction used to separate the two shocks un-
der consideration imposed that a demand shock has no long-run (permanent) effect on GDP,
while a supply shock may. Instead, our approach allows us to first obtain the two unique struc-
tural impulse response consistent with a DSGE, and then to examine the extent to which the
Blanchard and Quah (1989)’s restrictions are consistent with our D-SVAR.

We will provide three examples drawn from the literature to show how our approach can
be used to evaluate SVAR strategies. We first present the Blanchard and Quah (1989) example
discussed above. Then we examine the proxy VAR strategy used in Gertler and Karadi (2015)
to identify monetary shocks by exploiting a high frequency instrument (see Kuttner (2001),
Gürkaynak et al. (2005), Bernanke and Kuttner (2005) and Gürkaynak et al. (2007) for early
work on High Frequency Identification of monetary policy shocks). Finally, we assess the valid-
ity of the impact restrictions used in Christiano et al. (1999, 2005) to identify monetary policy
shocks. We will show that, for two of these examples (Blanchard and Quah (1989) and Chris-
tiano et al. (1999)), the identifying restrictions cannot be rejected within our D-SVAR, while
they are in the proxy-VAR of Gertler and Karadi (2015).

Related Literature. Our identification result relates to several papers including, among
others, McGrattan (2010), Pagan and Robinson (2019), Bai and Wang (2015) and Gourieroux
and Jasiak (2022). While several of our theoretical results have precedents in the literature, our

2Uniqueness is up to the sign and/or a permutation of the shocks.
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contribution is to establish how and when the implicit assumptions put on the data generating
process by SVARs allow for the identification of the full set of structural impulse responses.

McGrattan (2010) derives conditions for identification of an unrestricted state-space repre-
sentation associated with a specific small-scale Real Business Cycle model.3 In particular, the
paper shows that, when the model includes a permanent technology shock and a stationary
labor wedge shock (in the form of a labor income tax), the unrestricted state-space representa-
tion is identified. Our paper provides conditions for identification in a broader class of DSGE
models, admitting a VAR or a VARMA representation of the solution. Pagan and Robinson
(2019) note that SVARs may face difficulty to properly uncover the loading matrix of DSGE
models because standard estimation of SVAR models avoids imposing the type of statistical
restrictions commonly used in DSGE models —e.g. that structural shocks follow mutually
orthogonal univariate autoregressive processes. The two authors discuss conditions for local
identification in SVARs when the autoregressive matrix is diagonal and shocks are normalized.
Our formal analysis shows more generically the conditions on the autoregressive matrix that
allows to identify the structural shocks. Bai and Wang (2015) study identification in dynamic
factor models similar to our unrestricted state space representation. Their approach, in line
with the conventional way of identifying shocks in the VAR literature, imposes restrictions on
the loading matrix while leaving unrestricted the autoregressive matrix of factors. In this paper,
we take the opposite viewpoint and determine which type of organisation of the autoregressive
matrix allows to freely identify the loading matrix in the state-space representation. Finally,
Gourieroux and Jasiak (2022) provide conditions for identification in multivariate undetermined
convoluted systems when the exogenous shocks (the “sources” in their terminology) follow lin-
early independent autoregressive processes of order one and when there is no intrinsic dynamics
of the endogenous variables. They show that when the autoregressive parameters are distinct,
the loading matrix (the “mixing matrix” in their terminology) is identified. Our paper departs
from theirs in at least three dimensions. First, we consider a larger class of dynamic models and
makes connections with the DSGE literature. Second, we extend the identification problem to
non diagonal autoregressive processes. Third, we determine conditions for partial identification
when the practitioner seeks to identify only a subset of structural shocks.

Outline. The paper is structured as follows. Section 2 presents the main results of the pa-
per. It shows how the D-SVAR representation can be derived, explains heuristically why it is
identified and presents an application. Section 3 formally proves local identification. Section
4 discusses estimation and inference in the D-SVAR setup. Section 5 illustrates the use of D-
SVARs to assess SVARs in the context of monetary policy shocks. A last section concludes. All
proofs are reported in an appendix.

3See also Kascha and Mertens (2009) for simulation experiments in a similar setup.
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2 A Primer on D-SVARs

This section shows how to derive our D-SVAR representation, while explaining its relationship
with a (linearised) DSGE model. It then explains intuitively why this D-SVAR should be
identified, by checking the necessary order condition, leaving proof of identification to the next
section.4 Finally, it presents a simple application to an output growth–unemployment VAR.

2.1 A Basic Setup

Let us assume that the Data Generating Process (DGP hereafter) is an economic model (typi-
cally a DSGE model) of the type

Xt = M1Xt−1 +M2Et[Xt+1] +M3Zt,

Zt = RZt−1 + εt.
(1)

where Et[·] denotes the expectation operator conditional on period t information set, Xt is a
nx×1 vector of endogenous variables and Zt is a nz×1 vector of structural shocks. Those shocks
are assumed to be autoregressive of order one.5 The structural innovations εt are normally
distributed, with zero mean and their covariance matrix is identity. Note that this implies that
the loading matrix M3 encapsulates the size of the shocks. The vector Xt splits between the
(ny×1) vector Yt of observed variables and the (nk×1) vector of unobserved (latent) variables Kt.
Note that some substitutions might be needed to obtain a system featuring as many observed
variables as shocks (ny = nz).

Matrices M1, M2, M3 are functions of the vector of deep parameters, θ, and encapsulate
any cross-equation restrictions imposed by the micro-foundations of the DSGE model. Note in
particular that those matrices Mi may contain some zero elements. Finally matrix R gathers
all the parameters pertaining to the dynamics of the shock processes. In this section, it is
assumed that all the variables in Xt are observable, while the shocks Zt are not. The case of
non-observable state variables will be dealt with in Section .7 of the Online Appendix. The
solution of the model admits6 the following state space representation

Kt = GKt−1 + FZt,

Yt = ΠykKt−1 + ΠyzZt,

Zt = RZt−1 + εt.

(2)

where G, F , Πyk and Πyz are functions of M1,M2,M3 and R, and therefore of θ and R, as
represented by the mapping

(G,F,Πyk,Πyz, R) = Φ(θ,R).
4Here we refer to the first order condition for identification. However, local identification may still be possible

using higher order conditions (see Sargan (1983) and Dovonon and Hall (2018)).
5To keep exposition simple at this stage, we present only the case of a model with one lead and one lag and

an order one process for shocks. Conceptually, everything extends to higher order models.
6This implicitly assumes that the dynamic system admits a saddle path. When the system is locally indeter-

minate, the Zt vector can be extended to capture extrinsic uncertainty.
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Shall System (2) be identified, one can then go one step further and identify the model param-
eters, provided that the mapping Φ is invertible.

Having set the stage for system (2), we are now in a position to discuss the identification of
shocks.

2.2 Heuristic Approach to Identification

We consider the case where the state vector Xt only consists of observed variables Yt, which, as
we will show, can be directly written as a VAR. The case of latent endogenous state variables
is treated in full generality in the next section. We also assume that there are as many such
observed variables as shocks (n = ny = nz). In this case, Πyk = I and Πyz = 0, such that the
system reduces to

Xt = GXt−1 + FZt,

Zt = RZt−1 + εt.
(3)

Eliminating Zt, System (3) can be written as a SVAR(2) process, that we dub a D-SVAR:

Xt =
(
G+ FRF−1

)
Xt−1 − FRF−1GXt−2 + Fεt. (4)

Estimating a VAR(2) on the data, one can obtain the non structural VAR representation:

Xt = Γ1Xt−1 + Γ2Xt−2 + νt. (5)

where νt is a vector of canonical innovations with covariance matrix Σν . The representation (5)
is referred to as the non structural VAR. Matrices Γ1, Γ2 and Σν are functions of G,F and R

according to the mapping
(Γ1,Γ2,Σν) = Ψ(G,F,R).

Note that provided the D-SVAR representation can be recovered –i.e. if the mapping Ψ is
invertible, one can compute the theoretical impulse responses functions of the structural model,
the variance decomposition, conditional correlations …

Identifying the D-SVAR (4) means recovering matrices G, F and R from Γ1, Γ2 and Σν .
Absent any restrictions, each matrix contains n2 elements, so that 3n2 unknown coefficients need
to be recovered. The available information in the non-structural VAR is given by (Γ1,Γ2,Σν).
The system of equations that determines the elements of F ,G and R is, using (4) and (5):

Γ1 = G+ FRF−1,
Γ2 = −FRF−1G,
Σν = FF ′.

(6)

Because Σν is symmetric, this system only provides with 3n2 − n(n−1)
2 independent equations

for 3n2 unknowns. This is the well-known problem of the identification of shocks in SVARs. If
one adds some extra identifying restrictions (at least n(n−1)

2 ), then F , G and R can be identified.
Of course, this order condition is only necessary, and a rank condition also needs to be satisfied
(see Section 3). For now, let us simply count the number of restrictions and check a necessary
condition for identification. A restriction typically imposed in the VAR literature assumes
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that F is lower triangular, which amounts to restrict the effect of shocks on impact (see Sims
(1980)). This puts exactly n(n−1)

2 restrictions, so that the VAR is just identified. But, shall
the loading matrix F be obtained from solving a standard DSGE, F is a complicated function
of the matrices M1, M2, M3 and R, and may not necessarily comply with the lower triangular
assumption unless some specific assumptions are placed on the timing of agent’s decisions (see
e.g. Christiano et al. (2005)). Likewise, restricting the long-run, as in Blanchard and Quah
(1989), imposes a particular structure on the loading matrix F that not all DSGE share.

Our D-SVAR approach does not hinge on restricting the loading matrix F but rather relies
on assumptions placed on the dynamic structure of the shocks only —i.e., on the autoregressive
matrix R. To fix ideas, let us assume that the shocks in Zt are mutually orthogonal at all leads
and lags – i.e. that R is a diagonal matrix with distinct diagonal elements. In other words, let
us assume that all the shocks in the DSGE model follow linearly independent AR(1) processes.
While this assumption may appear very restrictive at first sight, it is shared by a vast majority
of the DSGE literature. In that case, the necessary order condition is satisfied: R only consists
of n non zero diagonal elements, so that we have 2n2+n unknowns to determined. Note however
that, as we will show in the next section, counting restrictions does not guarantee identification.
For example, a diagonal autoregressive matrix with identical elements (i.e. R = ρIn) cannot be
identified as, in that case, F drops from the first two equations of System (6). We will follow
another strategy to prove formally identification in the next section

2.3 Application to a Bivariate VAR

Here we apply our dynamic identification to a bivariate VAR featuring the growth rate of output
per capita, ∆yt, and a measure of the unemployment rate gap, ut, computed as the gap between
the actual and non-cyclical rate of unemployment. Blanchard and Quah (1989) (BQ hereafter)
used a similar VAR to uncover the permanent, εP , and transitory, εT , component of output
by imposing that the latter has no long-run effect on the level of output. We estimate a VAR
for the 1960Q1–2007Q4 period using two lags of data, as selected by BIC, and recover the D-
SVAR representation. As we will show in Section 4, we use by an Asymptotic Least Squares
estimation method (see Corollary 1) using the unrestricted VAR as auxiliary model. A J-test
can be designed, that does not reject the over–identifying restrictions imposed by the D-SVAR
(see Section 4 for details). Impulse responses to our two structural shocks are displayed in Figure
1. Table 1 reports the associated forecast error variance decomposition at various horizons.

We uncover an interesting and familiar pattern. There is a shock, ε2, that increases output
and decreases unemployment on impact. Then the response of output is hump-shaped and goes
back to almost zero in the long-run. This shock explains more than 80% of unemployment
volatility at any horizon, about 75% of the volatility of output on impact, but about 0% in
the long-run. The other shock, ε1, exerts a permanent effect on output and little effect in
unemployment. The two shocks look pretty much like the permanent and temporary shocks of
BQ. This is confirmed by the dash lines on Figure 1, which correspond to the BQ identification.
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with (∆y,u) using two lags. The grey area represents 68% confidence bands obtained from 1,000
Bootstrap replications.

Figure 1: Comparing the D-SVAR with Blanchard and Quah (1989) Identification

Table 1: Forecast Error Variance Decomposition, (∆y, u), D-SVAR and Blanchard and Quah
(1989)

Output Unemployment gap
Horizon ε1 ε2 εP εT ε1 ε2 εP εT

1 24.7 75.3 34.0 66.0 15.9 84.1 9.2 90.8
4 18.4 81.6 27.0 73.0 4.7 95.3 1.3 98.7
8 22.3 77.7 31.3 68.7 2.6 97.4 1.2 98.8
20 42.1 57.9 49.1 50.9 2.0 98.0 1.7 98.3
∞ 99.8 0.2 100.0 0.0 2.0 98.0 1.7 98.3

Sample is 1960Q1-2007Q4. Estimation is done with (∆y,u) using two lags, where y is the real GDP
and u is the unemployment rate gap. ε1 and ε2 correspond to the D-SVAR, εP and εT to Blanchard
and Quah (1989).
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Responses are indeed very similar. Figure 2 shows scatter plots of the BQ’s permanent and
transitory shocks against ε1 and ε2: the correlation between the D-SVAR and BQ shocks is
almost perfect in both cases.

As we will make it explicit in Section 4, the estimation of the D-SVAR allows to test the
BQ identification restriction. If one restricts the data to be generated by a model in which the
two latent shocks are linearly independent AR(1) processes, then, as can be seen on Figure 1,
one cannot reject at 0% that one shock has a permanent effect on output. Figure 1 seems to
indicate that the impact response of the unemployment gap differs across the two identifications.
However, a formal test of the null hypothesis of equality between the two IRF does not reject
the null hypothesis, with a p-value of 40%.
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Sample is 1960Q1-2007Q4. Estimation is done with (∆y,u) using two lags, where y is the real GDP and u is the
unemployment rate gap.

Figure 2: Correlation between D-SVAR and BQ shocks

Our dynamic identification hence recovers dynamics that are extremely similar to Blanchard
and Quah (1989), whose identifying restrictions can be tested (and not rejected) under the D-
SVAR.7

3 D-SVAR Identification

This section formally proves local identification of the D-SVAR. We start by fixing some nota-
tions that will be used throughout the proof, we then analyze identification relying on covariance
matrix restrictions only and finally add dynamic restrictions.

7As illustrated in the Online Appendix .10, an advantage of our approach though is that the identification of
the shocks does not require the estimation of the spectral density of, at least, one variable at frequency 0 —an
object which is usually hard to estimate and at best very imprecise (see, e.g. Fernald (2007)).
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3.1 Setup

Consider an economy whose DGP is described by the following state-space representation (we
abstract from constant vectors without any loss of generality)

Kt︸︷︷︸
nk×1

= G︸︷︷︸
nk×nk

Kt−1︸ ︷︷ ︸
nk×1

+ F︸︷︷︸
nk×nz

Zt︸︷︷︸
nz×1

, (7)

Yt︸︷︷︸
ny×1)

= Πyk︸︷︷︸
ny×nk

Kt︸︷︷︸
nk×1

+ Πyz︸︷︷︸
ny×nz

Zt︸︷︷︸
nz×1

, (8)

Zt︸︷︷︸
nz×1

= R︸︷︷︸
nz×nz

Zt−1︸ ︷︷ ︸
nz×1

+ εt︸︷︷︸
nz×1

, (9)

where the (ny × 1) vector Yt gathers all observed variables, (nk × 1) vector Kt collects all of
possibly unobserved (latent) state variables, Zt represents the (nz × 1) vector of unobserved ex-
ogenous variables and εt is the (nz × 1) vector of structural innovations to Zt. In particular, εt
satisfies Et−1εt = 0, where Et−1 denotes the expectation operator conditional on the information
set of histories until period t − 1, i.e. all past realizations and histories of {Kt, Yt, Zt}.8 This
framework is general enough to represent the (log-)linear solution of most (dynamic general)
equilibrium model, including among others DSGE models. This solution usually depends on a
limited number of parameters, that we denote by θ gathering all “deep” structural parameters
(representing preferences, technology, institutions, policies …), together with the stochastic pro-
cess of the exogenous forcing variables present in the structural model. In this case, the matrices
in the state-space representation (7)–(9) will be functions of θ. In this paper, we do not consider
the identification of θ, but instead the identification of the state-space parameters that freely
enter in the matrices of the state-space representation. We denote this vector of state-space
parameters ψ. It must be clear to the reader that system (7)–(9) imposes less restrictions than
the (possibly underlying) DSGE model. The only restrictions that we will explore apply to the
matrix R and the covariance matrix of the structural innovations εt in Equation (9). Finally,
the shocks εt are zero mean weak white noise processes with covariance matrix E(εtε′

t) = Σε.
System (7)-(9) can be rewritten in the more compact form

St+1 = ASt +Bεt+1, (10)

Yt = ΠSt, (11)

with

St︸︷︷︸
ns×1

=
[
Kt

Zt

]
, A︸︷︷︸

ns×ns

=
[

G FR
0nz×nk

R

]
, B︸︷︷︸

ns×nz

=
[
F
Inz

]
and Π︸︷︷︸

ny×ns

=
[
Πyk Πyz

]
,

where ns = nk+nz. System (10)-(11) can be expressed as the Fernández-Villaverde et al. (2007)
ABCD representation

St+1 = ASt +Bεt+1, (12)

Yt+1 = CSt +Dεt+1, (13)
8Shall some elements Kt be observed, those elements should be reassigned to vector Yt and the matrices Πyk

and Πyz should be adjusted accordingly.
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where C = ΠA and D = ΠB. Note that, in the sequel, we consider the case where the number
of observables is equal to the number of shocks. Some assumptions need to be placed on the
ABCD representation (12)-(13).

Assumption 1 For any z ∈ C, det(I −Az) = 0 implies |z| > 1.

Assumption 1 restricts the class of matrices A to those with eigenvalues lying inside the unit
circle. Under Assumption 1 and using (10)-(11) and/or (12)-(13), the process {Yt} admits the
following infinite Vector Moving Average (VMA) representation:

Yt = Π(I −AL)−1Bεt =
[
C(I −AL)−1BL+D

]
εt = H(L,ψ)εt

where H(z, ψ) =
∑∞
j=0 h(j;ψ)zj is the transfer function and L denotes the lag operator. For

every ψ ∈ Ψ, E(Yt) = 0 and

E(YtY ′
s ) ≡ Γ(s− t;ψ) =

∞∑
j=0

h(j;ψ)Σεh(j + s− t;ψ)′,

for all t, s ≥ 1, where ψ = (vec(A)′, vec(B)′, vec(C)′, vec(D)′, vech(Σε)′)′ is the vector collecting
all the parameters of the state-space representation (7)–(9).

For any weakly stationary process {Yt} implied by Assumption 1 and under the assumption
that the shocks ϵt are Gaussian, the unconditional mean and auto-covariance function completely
characterize the properties of the process. Let us therefore define the auto-covariance generating
function as:

Ω(z, ψ) =
∞∑

j=−∞
Γ(j;ψ)zj ,

for any z ∈ C. Evaluating Ω(z, ψ) at z = exp(iω) for any ω ∈ [−π, π] and rescaling it by (2π)−1

yields the spectral density of the observable {Yt} which is always positive semi-definite. To
simplify, we hereafter refer to Ω(z, ψ) as the spectral density as well.

As will be clear later, it will prove useful to defined observational equivalence for this class
of multivariate covariance stationary process. We closely follow Komunjer and Ng (2011) and
define it with respect to the entire auto-covariance function of the observable (or the spectral
density).

Definition 1 Two sets of state-space parameters ψ and ψ̃ are observationally equivalent if
Ω(z;ψ) = Ω(z; ψ̃), for all z ∈ C or, equivalently, Γ(j;ψ) = Γ(j; ψ̃) at all j ≥ 0.

In other words, two stationary state-space models are observationally equivalent is they share
the same auto-covariance (spectral) properties. This then allows us to define local identification.

Definition 2 The state-space representation (10)-(11) is locally identifiable from the spectral
density of Yt (or equivalently from the auto-covariances of Yt) at ψ ∈ Ψ if there exists an open
neighborhood of ψ such that for every ψ̃ in this neighbourhood, ψ and ψ̃ are observationally
equivalent if and only if ψ̃ = ψ.
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In state space system, the spectral density function can be simply obtained from the transfer
function and the covariance matrix of the shocks, Σε, as

Ω(z, ψ) = H(z;ψ)ΣεH(z−1;ψ)′,

where, in our ABCD representation of the dynamics,

H(z;ψ) = Π(I −Az)−1B ≡ C(I −Az)−1B +D,

with z = exp(iω) for any ω ∈ [−π, π]. As explained in Komunjer and Ng (2011), this repre-
sentation of the spectral density makes it clear that equivalent spectral density function can
obtain because (i) for given Σε, two distinct vectors of state space parameters, ψ and ψ̃, yield
the same transfer function (H(z;ψ) = H(z; ψ̃)) or (ii) many pairs of H(z;ψ) and Σε give rise
to the same spectral density.

In general, the state-space parameter ψ is not identifiable from the second order moments
of the observable variables. As an illustration, let us consider the following two state-space
representations (Kt is observable):

S =


Kt = GKt−1 + FZt−1,

Yt = ΠykKt + ΠyzZt,

Zt = RZt−1 + εt,

S̃ =


Kt = GKt−1 + F̃ Z̃t−1,

Yt = ΠykKt + Π̃yzZt,

Z̃t = R̃Z̃t−1 + ε̃t,

where Z̃t = U−1Zt, F̃ = FU , Π̃yz = ΠyzU , R̃ = U−1RU and Σ̃ε = U−1ΣεU
−1′ for some full

rank matrix U . The two representations S and S̃ are observationally equivalent with respect
to the spectral function since Ω(z, ψ) = Ω(z, ψ̃) for all z ∈ C where the vectors ψ and ψ̃ gather,
respectively, the elements of the vectorization of matrices defining, respectively, S and S̃.

Following Komunjer and Ng (2011) (see Proposition 1-S), the following property obtains in
the case of the ABCD representation
Property: Two distinct vectors of state-space parameters ψ, ψ̃ ∈ Ψ are observationally equiv-
alent respective to the transfer function and the spectral density if and only if there exists a
full rank ns × ns matrix T and a full rank nz × nz matrix U such that Ã = TAT−1, B̃ = TBU ,
C̃ = CT−1, D̃ = DU and Σε̃ = U−1ΣεU

−1′.
This property obtains as follows. First, the equalities Ã = TAT−1, B̃ = TB, C̃ = CT−1 are

necessary and sufficient for the equivalence of the transfer function H(z; ψ̃) = H(z;ψ). Suffi-
ciency follows directly from the observation of the transfer function in the ABCD representation

H(z; ψ̃) = C̃(I − Ãz)−1B̃ +D

= CT−1(I − TAzT−1)−1TB +D

= CT−1T (I −Az)−1T−1TB +D = H(z;ψ).

The necessary condition follows directly from a well known result in control theory under the
condition of minimality of the state-space representation (See Theorem 3.10 in Antsaklis and
Michel (1997) and Chapter 8 in Gouriéroux and Monfort (1995) ). A system is minimal if and
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only if it is controllable and observable (see Appendix .1 for formal definitions), implying that,
among all systems leading to the same output spectral density, it is driven by the minimal
number of state variables. This equivalence class is function of a non-singular transformation
that corresponds to a rotation of the state, i. e., T−1St.

The equivalence of the spectral density is obtained for a full rank matrix U such that:

H(z;ψ)ΣεH(z−1;ψ)′ = H(z;ψ)UU−1ΣεU
−1′
U ′H(z−1;ψ)′.

Fixing B̃ = BU , D̃ = DU and Σε̃ = U−1ΣεU
−1′, this yields H(z; ψ̃) = H(z;ψ)U = DU +

C [I −Az]−1BU. Observational equivalence follows immediately.
We therefore established that identification of ψ or a subset of ψ cannot obtain without

placing additional restrictions on the covariance matrix, Σε. This is what we do in the next
section.

3.2 Covariance Matrix Restrictions

This section provides a key proposition on local identification when restrictions are placed on the
covariance matrix only. In particular, we consider the case where the structural innovations are
mutually orthogonal and their covariance matrix is normalised to the identity matrix such that
E(εtε′

t) = Inz – a common identifying assumption in the SVAR literature (see Ramey (2016)).
In this case, matrices F and Πyz in (7)–(9) encapsulate any scale effect from the shocks —i.e.
contains information about the volatility of the shocks. A direct implication of this assumption
is that the only admissible matrix U which allows for Σε̃ = U−1ΣεU

−1′ = Inz is an orthonormal
matrix—i.e. UU ′ = Inz (see Corollary 1 of Kocięcki and Kolasa (2018)).

We further make the following assumption, that adapts Assumption 1 to our initial state
space representation (7)–(9).

Assumption 1′ For any z ∈ C, det(I − Az) = 0 implies |z| > 1 and matrices G and R have
no eigenvalues in common.

Since matrix A is block triangular (see System (10)–(11)), we have det(I − Az) = det(I −
Gz)det(I − Rz). Matrices G and R have all their eigenvalues lying within the unit circle
and do not have any common eigenvalue. The latter assumption is necessary to disentangle
the dynamics of the latent variables Kt from those of the exogenous process Zt. Endowed with
Assumption 1′, the next proposition shows that the rotation matrix T is block upper triangular.

Proposition 1 Under Assumption 1′, we have

• When the state variables Kt are unobserved, the full rank matrix T has the form

T =
[
T11 T12

0nz×nk
V

]
, (14)

with T11 a full rank (nk × nk) matrix.
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• When the state variables Kt are observed, the full rank matrix T has necessarily the
following form:

T =
[
Ink

0nk×nz

0nz×nk
V

]
, (15)

In both cases, V is an orthonormal (nz × nz) matrix such that V V ′ = Inz and V = U ′ = U−1

defined above.

Proof : See Appendix .2.

Proposition 1 implies that, as long as state variable Kt is observed, matrices G and Πyk

can be identified using the observed spectral density function.9 However, it does not allow for
proper identification of the loading matrix F relying on the properties of Zt. Indeed, a direct
implication of the proposition is that there exists at least one equivalent exogenous process to
(9):

Zt = V RV ′Zt−1 + εt. (16)

Observational equivalence in terms of transfer function (and spectral density) holds if and only
if sub-matrix V in matrix T defined in (15) is orthonormal (V V ′ = Inz ). In that case, pre-
multiplying (16) by V ′ we get

Z̃t = RZ̃t−1 + ε̃t,

where Z̃t = V ′Zt, ε̃t = V ′εt and E(ε̃tε̃′
t) = Inz . In other words, the sole knowledge of the

spectral properties of Zt is not sufficient to identify F . Further (dynamic) restrictions need to
be placed on the autoregressive matrix R.

3.3 Covariance Matrix and Dynamic Restrictions

This section focuses on the local identification of the exogenous process Zt relying on second
order moments information (spectral density of observables Yt). Our strategy is to show that the
only admissible permutation matrix in equation (16) is V = Inz (up to changes of sign and/or
permutation of the identity matrix) and hence that there indeed exists only one Zt process that
is compatible with the spectral properties of observables Yt. We examine the following four
cases (commonly encountered in the DSGE literature):

1. R is a diagonal matrix;

2. R is a lower (identically upper) triangular matrix;

3. R is a symmetric matrix;

4. R is a block diagonal matrix with blocks corresponding to cases 1 and 2;

and prove the identification problem in each case.
9The observed spectral density (or equivalently the auto-covariance) function can be obtained by the estimation

of a VAR, a VARMA or by the ML estimation of a state space representation.
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3.3.1 R is a Diagonal Matrix

The case of a diagonal matrix is of particular interest. It implies, together with the restriction
on the covariance matrix, that all processes in the Zt vector are mutually orthogonal at any
leads and lags. While this assumption may sound very restrictive, it actually corresponds to
the common practice in the DSGE literature, and hence echoes economic theory. The next
proposition derives the sufficient condition for local identification.

Proposition 2 If R is a diagonal matrix with distinct diagonal elements (ri,i ̸= rj,j , ∀i ̸= j)
then the state-space model (10)-(11) is locally identifiable.

Proof : See Appendix .3.

In other words, the loading matrix F and the autoregressive matrix R are locally identifiable
if all the autoregressive parameters of the nz linearly independent forcing variables are all differ-
ent. Henceforth, if one has in mind a “standard” DSGE model featuring mutually orthogonal
shocks at any leads and lags, dynamic identification easily obtains. From an intuitive point of
view, identification obtains because, given an economic structure, differences in the persistence
of shocks implies that the impulse response functions to each shock all bring different informa-
tion regarding the dynamics. To see this more concretely, it may prove useful to consider the
following example.

Example: Identification of Demand/Supply Shocks in a New-Keynesian Model.
Consider the following textbook 3-equation New Keynesian (NK) model (see Galí (2015)) fea-
turing two structural shocks

yt = Etyt+1 − (it − Et[πt+1]) + z1,t,

πt = βEt[πt+1] + κyt + z2,t,

it = ϕππt,

where yt, πt and it denote respectively aggregate output, the rate of inflation and the nominal
interest rate and Et[·] denotes the conditional expectation operator. Parameter β ∈ (0, 1) is
the discount factor, κ ≥ 0 denotes the slope of the Phillips curve and ϕπ is the degree of
aggressiveness of monetary policy to inflation. The random shock z1,t can be interpreted as a
demand shock shifting the IS curve, whereas z2,t is a cost-push shock shifting the Phillips curve.
For expositional purposes, we assume that the demand shock, z1,t is serially uncorrelated (as
a benchmark case), while z2,t exhibits serial correlation. Assuming the Taylor principle holds
(ϕπ > 1), the solution takes the form

Xt = FZt,

where F is a 2 × 2 matrix that depends on the structural parameters and the persistence
of the cost-push shock (ρ). The vector Xt = (yt, πt)′ contains the two endogenous variables
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and Zt = (z1,t, z2,t)′ is the vector of the two structural shocks which is assumed to follow the
autoregressive process

Zt = RZt−1 + εt with R =
[
0 0
0 ρ

]
and εt =

[
ε1,t
ε2,t

]
,

where εt is a zero mean weak noise and where we impose the normalisation E(εtε′
t) = I2.

Our problem is then to identify the vector of five parameters ψ = {ρ, f11, f12, f21, f22} from
the auto-covariance function of yt and πt. Each element of the vector Xt can be expressed as a
linear combination of the innovations of the shocks as

yt = f11ε1,t + f12

∞∑
i=0

ρiε2,t−i

πt = f21ε1,t + f22

∞∑
i=0

ρiε2,t−i

from which the auto-covariances of yt and πt can easily be obtained. For instance the variance
and auto-covariances of output express as (similarly for inflation)

γy(0) = f2
11 + f2

12
1 − ρ2 ,

γy(h) = ρh
f2

12
1 − ρ2 for h > 0.

Note that computing the ratio γy(h+ 1)/γy(h) for any h > 0 allows to immediately identify ρ.
Given ρ, the knowledge of any γy(h) for h > 0 is sufficient to identify f12 (up to its sign). Then,
f11 (up to its sign) straightforwardly obtains from γy(0). Using the same approach with the
auto-covariance function of inflation identifies f21 and f22. It is worth noting that when ρ = 0,
so the two shocks z1,t and z2,t display the same dynamic properties and the parameters fij are
not identified. Indeed, in this case, the model reduces to[

yt
πt

]
=
[
f11 f12
f21 f22

] [
ε1,t
ε2,t

]
,

which is not identifiable from the covariance matrix of Xt (3 moments to identify 4 parameters).
This example therefore illustrates in what sense the dynamic structure of exogenous forcing
variables is key to identify the state–space representation.

3.3.2 R is a Lower Triangular Matrix

We now extend the autoregressive matrix R to the case of lower triangular shape, hence relaxing
its diagonal feature. Let us define the matrix

Λ =


λ1Inz1 0 · · · 0

0 λ2Inz2 · · · 0
... . . . ...
0 0 · · · λLInzL

 ,
with λi ̸= λj for i ̸= j, and nzl be positive integers for l = 1, . . . , L such that nz1 + . . .+nzL = nz

and nzl = m(λl) denotes the multiplicity of eigenvalue λl.
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Proposition 3 If R is a lower triangular matrix with the same main diagonal as Λ and all
elements on the first sub-diagonal are different from zero, i.e. ri+1,i ̸= 0 for i = 1, . . . , nz − 1,
the state-space model is locally identifiable.

Proof : See Appendix .4.

Proposition 3 indicates that, contrary to the strict diagonal case, the lower triangular case
does not require all diagonal elements to be different to permit identification. Should there
be some identical elements on the diagonal, they should appear in consecutive order —i.e. all
gathered in one of the matrices λℓInzℓ

. The proposition also implies that while not all elements
below the diagonal have to be non-zero, those lying on the first sub-diagonal have to be non
zero. Again, intuitively, the condition for proper local identification is that all shocks should
lead to distinguishable dynamics (as captured for example by IRF), hence some elements have
to be distinct to guarantee that different shocks generate different dynamics.

3.3.3 R is a Symmetric Matrix

For simplicity, we restrict the presentation the case with two shocks. The matrix R is symmetric
with the same value on the diagonal, and the same value on the anti-diagonal. While such a
configuration may appear as a curiosity at first sight, it is actually of very practical interest in
the international macroeconomic literature since the seminal work of Backus et al. (1992) 10.
For this specification, the autoregressive matrix takes the following form:

R =
[
ρ τ
τ ρ

]
with τ ̸= 0. (17)

The previous non-zero restriction on τ is critical. When τ = 0, matrix (17) reduces to a diagonal
matrix with identical elements and therefore does not satisfy Proposition 2. Provided τ ̸= 0,
the following proposition holds.

Proposition 4 For the 2 × 2 symmetric matrix R (eq. 17), the state-space model is locally
identifiable.

In particular, and contrary to the diagonal case, we show in the Appendix .5 that the diagonal
elements must necessarily be identical for local identification of the state-space model.11

3.3.4 Partial Identification.

Finally, Proposition 5 establishes that the model is partially identifiable. In other words, even
though some shocks may not be identified, it is still possible to identify a subset (Online Ap-
pendix .8 provides a simple illustrative example).

10This dynamic structure of autoregressive matrix has widely been used, among others, by Backus et al. (1994),
Baxter and Crucini (1995), Heathcote and Perri (2002) and Kehoe and Perri (2002).

11Appendix .13 offers an illustration of the symmetric autoregressive matrix, R, with an application to the
international transmission of shocks between the US and the Euro area.
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Proposition 5 In the case of a block diagonal organisation of the R matrix with one block
corresponding to one of the preceding cases, the state–space model is partially locally identifiable
for this block.

Proof : See Appendix .6.

4 Estimation and Inference

This section discusses estimation and inference in the D-SVAR approach and shows how this
approach can be used to evaluate DSGE and SVAR models.

4.1 Estimation

To simplify the exposition, and without loss of generality, let us consider the simplified state
space representation

Xt = FZt (18)

Zt = RZt−1 + εt , (19)

where E(εtε′
t) = Inz. In the sequel, we will restrict ourselves to cases where the parameter vector

ψ = (vec(F )′, vec(R)′)′ is indeed locally identified, such that the conditions for the validity of
Propositions 2-5 are satisfied. Vector ψ can thus be estimated either by Maximum Likelihood
(ML) from (18)-(19) or equivalently by a two step Asymptotic Least Square (ALS) approach
(See Corollary 1 below). Let us denote ψ̂T the ML estimator of ψ for a sample size T . Absent
any unobserved variables, the D-SVAR representation rewrites as a VAR(1) model:

Xt =
(
FRF−1

)
Xt−1 + Fεt (20)

where the F is identified using the dynamic structure of unobserved structural shocks. So the
loading matrix F is obtained without any restriction. Consider now the reduced-form VAR(1)
representation :

Xt = ΓXt−1 + ut (21)

with E(ut) = 0 and E(utu′
t) = Σu. This implies that ut = Fεt.

Our D-SVAR representation imposes as many or more restrictions on the dynamic structure
of the data Xt than the unrestricted VAR model. This offers an opportunity to use the informa-
tion contained in the parameters of the unrestricted estimated VAR model (21) to estimate ψ
in the D-SVAR (18)-(19). Let us define η = (vec(Γ)′, vec(Σu)′)′ and the binding function η̃(ψ).
We derive a version of the Corollary in Gouriéroux and Monfort (1995) (Chap. 10, Section
10.4.2, Corollary 10.2) adapted to our D-SVAR.

Corollary 1 Let η̂T be a consistent and asymptotically normal estimator of η from (21) and
let η(ψ) be the binding function. The ALS estimator ψ̂T obtained by solving

min
ψ

[η̂T − η̃(ψ)]′ ST [η̂T − η̃(ψ)] , (22)
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where ST is an estimator of the inverse of the asymptotic covariance matrix of η̂T , is a consistent
estimator of ψ and is asymptotically equivalent to the ML estimator ψ̂T of ψ obtained from (18)-
(19).

Intuitively, Corollary 1 states that estimating the parameter vector ψ in one direct step (ML
approach) or relying on a two step procedure using η as an auxiliary parameter (ALS approach)
yields asymptotic equivalent estimator of ψ. The two-step estimation uses the constraints
Γ =

(
FRF−1) and Σu = FF ′ to uncover the elements of the R and F matrices. This corollary

therefore illustrates the strong connection between our approach and standard VAR modelling.
Consider now the DSGE model that underlies system (18) and (19). This DSGE model

imposes cross-equation restrictions on the elements of the F (θ) matrix together with those
contained in the R(θ) matrix. Let us define the binding function ψ̃(θ) that expresses the vector
of state-space parameters, ψ, as a function of θ. Under the conditions provided in Komunjer
and Ng (2011), vector of parameters θ is also identifiable and can thus be estimated by ML, a
usual practice in the applied macroeconomic literature. Let us denote by θ̂T the ML estimator
of θ. Because our D-SVAR imposes less restrictions on the state-space representation (18) and
(19) than the DSGE model and provided dim θ < dim ψ, vector ψ can be used as an auxiliary
parameter to estimate θ. The following corollary, again adapted from Gouriéroux and Monfort
(1995), holds.

Corollary 2 Let ψ̂T be the ML estimator of ψ from the unconstrained state-space version of
the representation (18) and (19) and ψ̃(θ) the binding function. The estimator θ̃T obtained by
solving

min
θ

[
ψ̂T − ψ̃(θ)

]′
ST
[
ψ̂T − ψ̃(θ)

]
,

where ST converges to the inverse of the asymptotic covariance matrix of ψ̂T which is given by
the information matrix I(ψ) of the log-likelihood function, is asymptotically equivalent to the
ML estimator θ̂T of θ obtained from the constrained state-space version of the representation
(18) and (19)

Estimating θ is one step or by a two step procedure using ψ as an auxiliary parameter yields
asymptotically equivalent estimator of θ. Our unrestricted state-space representation features
less restrictions than the DSGE model and thus contains potentially useful information about the
relevance of the structural restrictions imposed by the DSGE model. This corollary illustrates
the tight relationship between the DSGE model and the D-SVAR.

4.2 Inference

The D-SVAR offers the possibility to conduct statistical inference both on DSGE and SVAR
models. Let us first consider the DSGE and our D-SVAR, and let us remind the reader that
the D-SVAR imposes no cross-equation restrictions during estimation. Using ML estimates
of the two models, it is then possible to test the relevance of the cross-equation restrictions
imposed by the DSGE model, and therefore guide modelling. Let us consider the null hypothesis
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that the DSGE model can mimic the unconstrained state-space representation (18) and (19),
H0 : ψ = ψ̃(θ). A Wald-type statistic to test for this null hypothesis is then given by:

WT = T (ψ̂T − ψ̃(θ̂T ))′I(ψ̂T )(ψ̂T − ψ̃(θ̂T )) (23)

which is asymptotically distributed as χ2 with p−q degrees of freedom under the null hypothesis,
where p = dim ψ and the assumption that rank

(
∂ψ(θ)
∂θ′

)
= dim θ = q, where I(ψ̂T ) is an esti-

mator of the information matrix evaluated at the unconstrained estimator ψ̂T (see Gouriéroux
and Monfort (1995), Section 17.4.1).12 A score test and a Likelihood Ratio test can also be
constructed (see Gouriéroux and Monfort (1995), Section 17.4.2 and Section 17.4.3).

As a particular but interesting case, a test for the equality of the loading matrix F (restricted
(DSGE) and unrestricted (D-SVAR)) can also be performed. The associated statistic is given
by

WF
T = T

(
vec(F̂T ) − vec(F̃ (θ̂T )

)′
I11(ψ̂T )

(
vec(F̂T ) − vec(F̃ (θ̂T ))

)
where vec(F ) is a p1-vector. I11(ψ̂T ) is an estimator of the corresponding block to F of the
information matrix and F̃ (θ) is the binding function linking θ to the loading matrix F . Under the
assumption that rank

(
∂vec(F̃ (θ))

∂θ′

)
= q1 with q1 < p1 this statistics is asymptotically distributed

as a χ2 with p1 − q1 degrees of freedom under the null hypothesis. Since, the loading matrix F
collects the impact response of each variable to each shock, this test immediately assesses the
relevance of the structural restrictions. Inspecting point by point the impact responses and/or
the overall dynamic responses is also straightforward.

Let us now consider the D-SVAR and VAR models. First and foremost, a specification
test (J-test) can be performed in the case of over-identification, i.e. when the dimension of
the vector η is greater than the dimension of ψ, by multiplying the objective function (22) by
the number of observations. This allows to assess whether the dynamic restrictions imposed
by the D-SVAR model are satisfied and hence evaluate the reliability of our D-SVAR approach
regarding an unconstrained VAR model.

The D-SVAR also offers the opportunity to assess the relevance of various identification
schemes used in SVAR modelling. In particular, it allows to test general null hypotheses on
the loading matrix F . For example, one may be interested in the relevance of the timing
imposed by short-run restrictions. In this case, the null hypothesis writes H0 : Hvec(F ) = 0,
where the selection matrix H is such that the elements above the diagonal of F are all equals
to zero. Likewise, matrix H can be adapted to test for long-run restrictions à la Blanchard
and Quah (1989). A Wald statistic can then be computed with a consistent estimator of
the appropriate variance covariance matrix. Likewise, one may be interested in testing for the
dynamic response to a particular shock, as identified using two competing identification schemes.

12Under possible misspecification, the estimator of the information matrix I(ψ̂T ) can be replaced by an estima-
tor of the inverse of the sandwich formulae J (ψ̂T )−1I(ψ̂T )J (ψ̂T )−1 where I(ψ̂T ) is an estimator of the variance
covariance matrix of the score and J (ψ̂T ) an estimator of minus the second derivative of the log-likelihood
function.
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This can be achieved with a Wald statistic and using the appropriate asymptotic distribution
or by bootstrapping techniques as proposed by Inoue and Kilian (2016).13

5 Testing for SVARs Restrictions: Two Examples With Mone-
tary Policy Shocks

In this section we revisit two seminal papers that both proposed to identify monetary policy
shocks through the lens of the D-SVAR. The first one, Gertler and Karadi (2015), relies on an
external instrument to identify the shock — the so-called proxy VAR approach. The second,
Christiano et al. (1999), identifies a monetary policy shock by imposing zero restrictions on its
impact effect on key economic variables.

5.1 Revisiting Gertler and Karadi (2015) Proxy VAR

In this section, we revisit Gertler and Karadi (2015), who identified a monetary policy shock
relying on a proxy-VAR approach with an external instrument (see Beaudry and Saito (1998),
Stock (2008), Stock and Watson (2012) and Mertens and Ravn (2013) among others). Such
an approach avoids imposing timing restrictions on both the behavior and the impact of the
policy rate. The instrumental variable needs to satisfy two assumptions to identify a given
structural shock: i) the instrument must be relevant, i.e. the contemporaneous correlation
between the structural shock and the external instrument must be non-zero; ii) the instrument
must be exogenous, i.e. the instrument must be uncorrelated with the other structural shocks.
According to Gertler and Karadi (2015), an advantage of proxy VARs is that it does not impose
a special organization (and thus restrictions) of the loading matrix F . This is also the case in
our D-SVAR, and it is therefore interesting to compare the two approaches.

We first replicate Gertler and Karadi (2015) and estimate a VAR featuring the log consumer
price index, the log industrial production, the one year government bond rate, and Gilchrist
and Zakrajšek (2012) excess bond premium. The data are evaluated at the monthly frequency
for the period running from July 1979 to June 2012. Following Gertler and Karadi (2015), the
unrestricted VAR includes 12 lags. We then recover the impulse response function of these
variables to a monetary policy shock identified relying on the proxy VAR approach where,
like Gertler and Karadi (2015), the external instrument is the surprise in the three month
ahead futures rate. The identified contractionary monetary policy shock shifts the one-year rate
upward, decreases economic activity after one year, raises the excess bond premium persistently,
which signals the presence of financial frictions, and leads to a very small negative response of
the CPI, without exhibiting any price puzzle (see black lines in Figure 3).

Then we proceed to estimating our D-SVAR by an ALS approach, using the unrestricted
VAR as auxiliary model. As in the Blanchard and Quah (1989) example of Section 2.3, the
autoregressive matrix R is assumed to be diagonal. We recover four unlabelled structural

13In particular, in the case when the number of structural impulse responses exceeds the number of the VAR
parameters, the asymptotic distribution of a Wald statistic is degenerated but the bootstrap test can still be
implemented following the transformation of the statistic.
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(b) Impulse Response Function to ε3
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Gertler and Karadi (2015) D-SVAR

The black line is the response to a monetary policy shock, as identified following Gertler and Karadi (2015).
The grey line is the response to shock in the D-SVAR with diagonal R matrix. Shaded area represent ± 1
standard deviation around average D-SVAR response obtained from 1,000 Bootstrap replications. Sample is
1979M7-2012M6.

Figure 3: Responses to Gertler and Karadi (2015) monetary policy shock and D-SVAR’s shocks
ε1 and ε3

shocks that we arbitrarily index ε1, . . . , ε4. Is one of these shocks the Gertler and Karadi (2015)
monetary policy shock? We actually find that ε1 and ε3 are two shocks for which Gertler
and Karadi (2015) instrument would be valid, as the p-values for non-zero correlation between
these two shocks and the instrument are less than 5%, whereas they are above 5% for ε2 and
ε4. Through the lens of model with four AR(1) shocks, this shows that in Gertler and Karadi
(2015), the instrument identifies a shock that is a combination of ε1 and ε3, and not a single
exogenous monetary policy shocks. Figure 3 plots the responses of the four variables to the two
shocks ε1 and ε3, together with the responses to the Gertler and Karadi (2015) shock.

The shocks ε1 gives a very similar response of the one-year government bond rate as com-
pared to Gertler and Karadi (2015). Although the response is more persistent, the response of
the one-year government bond rate is also pretty similar. Inspection of the IRF for the other
variables reveals that none of these two shocks gives similar responses for the four variables.
The credit channel narrative of Gertler and Karadi (2015) requires an increase in the excess
bond premium, which is obtained with ε1, but comes with a persistent increase in industrial
production. For the shock ε3, there is indeed an increase in the one-year rate, a decrease in
industrial production but an increase in inflation and a decrease in the excess bond premium,
which does not square with the credit channel narrative of Gertler and Karadi (2015).
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5.2 Revisiting Christiano et al. (1999) Impact Restrictions SVAR

This section revisits Christiano et al. (1999) who identifies a monetary policy shock by means
of impact restrictions.14 We ask whether the obtained macroeconomic dynamics following a
monetary policy shock can be uncovered with a D-SVAR. The D-SVAR makes no assumptions
on the impact responses, but only assumes that underlying shocks follow mutually orthogonal
AR(1) processes. If Christiano et al. (1999) approach identifies a monetary shock, then we
should recover it using our D-SVAR approach —under the assumption that this shock is an
independent AR(1) shock.

We estimate a VAR featuring real GDP, the unemployment rate, CPI inflation, commodity
price inflation and the federal funds rate, in that order, for the period 1965Q1-2007Q4.15 The
VAR includes four lags. We then recover the impulse response function of these variables to
a monetary policy shock identified by impact restrictions as in Christiano et al. (1999): the
monetary policy shock corresponds to the shock that shifts the federal funds rate while leaving
the other variables unaffected on impact. As well known, the identified contractionary monetary
policy shock decreases output with a lag, and increases unemployment after a few quarters.
Prices increase for about two years, which is known as the price puzzle, and fall below their
initial level after this initial phase.

Then we proceed to estimating our D-SVAR by an ALS approach, using the unrestricted
VAR as auxiliary model. The J-test indicates that the restrictions imposed by the D-SVAR
are not rejected by the data. We recover five unlabelled structural shocks, ε1, . . . , ε5. Is the
Christiano et al. (1999) monetary shock one of these shocks? As illustrated in Figure 4, ε1 is
the only shock that exhibits strong positive correlation with Christiano et al. (1999) monetary
policy shock shock. Moreover, one cannot reject that this correlation be 1 (p-value=0.986),
while one cannot reject that all other shocks are uncorrelated with Christiano et al. (1999)
monetary policy shock (p-value<0.035).16

Figure 5 plots the responses to ε1 (grey lines), together with the responses to the Chris-
tiano et al. (1999) monetary policy shock. The figure indicates that the dynamics following a
Christiano et al. (1999) monetary policy shock and those following ε1 are very similar. Just
like for Christiano et al. (1999) monetary policy shock, a tightening of monetary policy leads to
a prolonged recession with output (resp. unemployment) reaching it trough after about seven
(resp. nine) quarters, and eventually reverting back in the longer run. Accordingly, both out-
put and unemployment exhibit persistent hump shaped dynamics to the shock, just like in the
aftermaths of a Christiano et al. (1999) monetary policy shock. Just like in Christiano et al.
(1999), prices exhibit a persistent price puzzle, although it is more severe. Such a “price puzzle”
is reminiscent of the results in Beaudry et al. (2020), and can be rationalized in a model with
a flat Phillips curve and a cost channel.

All in all, the response of the economy is very much in line under the two identification
14See also Christiano et al. (2005).
15We end the sample period in 2007Q4 to avoid dealing with the zero lower bound, which would require an

explicit non-linear modelling of the dynamics of the nominal interest rate to account for the presence of an
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ε1 to ε5 are the structural shocks as obtained with the D-SVAR. Sample is 1965Q1-2007Q4.

Figure 4: Correlation between Christiano et al. (1999) Monetary Shock and D-SVAR Shocks
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Figure 5: Responses to Christiano et al. (1999) monetary policy shock and D-SVAR’s shock ε1
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Table 2: Test of Zero Impact Restriction (p-values)
Output CPI Unemp. Com. Price

ε1 0.2470 0.6587 0.3890 0.8169

ε1 is the D-SVAR structural shock that is the closest to the Christiano et al. (1999)
monetary policy shock. Sample is 1965Q1-2007Q4.

schemes, and hence so are the forecast error variance decomposition (see Table 5 in Appendix
.12).17

Under the D-SVAR, we can go a step further and test if ε1 satisfies the zero impact restriction
imposed by Christiano et al. (1999). Table 2 reports the p-value associated to the zero impact
effect of ε1 on, respectively, output, the CPI, unemployment and the commodity price. The
results are strikingly in favour of the restriction imposed by Christiano et al. (1999) as none
of the p-values lies below 25%, well above the 5% standard level. This exercise shows that the
D-SVAR recovers a shock that is quite similar to the Christiano et al. (1999) monetary policy
one, although there is a more pronounced “price puzzle”. It also shows that the Christiano et al.
(1999) zero restrictions, which have been criticised as often not compatible with a DSGE model
(e.g. Carlstrom et al. (2009)), are not rejected by our D-SVAR.

6 Conclusion

In this paper, we have shown that one can identify structural shocks in a SVAR under the
identifying assumption that the economy shares the dynamic structure of the vast majority
of DSGE models. To put it loosely, if the economy is moved by exogenous variables that
follow mutually orthogonal AR(1) processes (or more general specification of the autoregressive
matrix), then a D-SVAR will allow for the identification of structural shocks, without the need
for zero-impact, long-run or sign restrictions. We have given a formal proof for identification
and have shown how to conduct estimation and inference with D-SVAR. We have then applied
our methodology to uncover the effects of monetary policy shocks, and shown that D-SVAR
give results in line with the most prominent approaches in SVAR the literature, namely proxy-
VAR as in Gertler and Karadi (2015) and zero impact restrictions as in Christiano et al. (1999),
although the Gertler and Karadi (2015) monetary policy shock cannot be easily thought as a
structural shock in a DSGE model.
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.1 Preliminaries: Controllability, Observability and Minimality

Consider the ABCD system representation (12) and (13). The system (or the pair (A,B)) is
controllable when any state St can be driven to the initial state in a finite number of steps for
a given input sequence εt. A formal definition is given by:

Definition 3 Controllability : A system is controllable if and only if the controllability matrix
C =

[
B,AB,A2B, . . . , Ans−1B

]
∈ Rns×nzns has full row rank i.e., rank(C) = ns.

If a system is state observable, its present state can be determined from the knowledge of the
present and future outputs Yt and inputs εt. A formal definition is given by:

Definition 4 Observability: A system is observable if and only if the observability matrix O
has full column rank, i.e., rank(O) = ns, where

O =


C
CA

...
CAns−1

 ∈ Rnyns×ns .

Theorem 1 A state-space representation is minimal if and only if it is controllable and observ-
able.

Proof : See Antsaklis and Michel (1997), Theorem 3.9, p.395 or Gouriéroux and Monfort
(1995), Chap. 8, Property 8.43, p. 282.
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.2 Proof of Proposition 1

Consider a general form for the matrix T such that T =
[
T11 T12
T21 T22

]
.

We first show that the relation ÃT = TA implies that T21 = 0. Since Ã is necessarily block
upper triangular, R̃T21 = T21G which can be rewritten as:

[(Ink
⊗ R̃) − (G′ ⊗ Inz )]vec(T21) = 0. (24)

Matrix Ã is similar to matrix A which implies that the eigenvalues of Ã are the same than the
eigenvalues of A.18 Since A is block upper diagonal, for the set of eigenvalues of A denoted λ(A),
we have λ(A) = λ(G) ∪ λ(R). The same property holds for Ã, i.e. λ(A) = λ(G̃) ∪ λ(R̃). This
implies that the eigenvalues of the matrix R̃ are the same then the eigenvalues of the matrix R.
Under Assumption 1′′, R and G share no common eigenvalues, this also holds for R̃ and G. The
expression [(Ink

⊗ R̃) − (G′ ⊗ Inz )] is then of full rank, Equation (24) holds only for T21 = 0.19

Now, for the block upper triangular matrix T =
[
T11 T12

0nz×nk
T22

]
, the equation B̃ = TBU

gives for the left lower block Inz = T22U . Since U is orthonormal, this implies T22 ≡ U−1 =

U ′ = V an orthonormal matrix. The matrix T has the following form: T =
[
T11 T12
0 V

]
. The

result for the case where the state variables Kt are observed follows directly.

.3 Proof of Proposition 2

The only admissible orthonormal matrix V such that all elements (i, i) of the diagonal matrix
R are identified is V = I when the diagonal element ri,i ̸= rj,j for ∀i ̸= j. For any other
orthonormal matrix V , it is easy to verify that the resulting R̃ = V RV ′ matrix is not diagonal.
Since V is a square matrix and is non singular, V corresponds to a similarity transformation,
the eigenvalues of matrix R̃ are the same as the eigenvalues of matrix R which implies that
the diagonal elements of R̃ are the same as the diagonal elements of R. Moreover, for diagonal
matrices R̃ and R, the system of equations R̃V − V R = 0 leads to

(r̃i,i − ri,i)Vi,i = 0 ( for i = 1, . . . , nz), (25)

(r̃i,i − rj,j)Vi,j = 0 (for i ̸= j and i, j = 1, . . . , nz), (26)

where ri,j and r̃i,j are respectively the element (i, j) of R and R̃.20 The first set of equation
implies that r̃i,i = ri,i for diagonal elements of V which are different from zero. Since the diagonal

18If X is a square matrix and nonsingular, then A and B = X−1AX are similar and X is called a similarity
transformation. If two matrices A and B are similar, they have the same eigenvalues, i.e. λ(A) = λ(B), and
the same number of independent eigenvectors but probably not the same eigenvectors (see Golub and Van Loan
(2013) p. 349). Moreover, if X is an orthonormal matrix, i.e. XX ′ = I, A and B real matrices and A = XBX ′,
A is said to be real orthogonally similar to B (see Horn and Johnson (2013), p. 94).

19If λ is an eigenvalue of A and µ an eigenvalue of B, λ − µ is an eigenvalue of (I ⊗ A) − (B ⊗ I) and all
eigenvalues of (I ⊗A) − (B ⊗ I) is on this form. Thus (I ⊗A) − (B ⊗ I) has zero as an eigenvalue if and only if
A has an eigenvalue λ and B has an eigenvalue µ such that λ− µ = 0.

20The system of equations R̃V −V R = 0 is of the well known form AX −BX = C in control theory called the
Sylvester equation. For C = 0, this corresponds to the homogeneous Sylvester equation (see Gantmacher (1959),
chap VIII).
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elements of R (and then R̃) are different, the second set of equations implies necessarily that
Vi,j = 0 for all i ̸= j. Matrix V is necessarily diagonal and the only orthonormal matrix which
is diagonal is the identity. The result also holds up to changes of sign and/or permutation of
the identity matrix.

Assume now that some elements on the diagonal are the same. Denote the multiplicity of
similar diagonal elements ri,i by m(ri,i). One can first check that all diagonal elements are
the same, in which case any orthonormal matrix V is admissible by equations (25) and (26).
Now consider that a subgroup of elements has the same value. The elements in the V matrix
corresponding to multiple values are not uniquely defined but only up to the post multiplication
by an m(ri,i) ×m(ri,i) orthogonal matrix. Without lost of generality, suppose that the diagonal
elements with the same value are ordered as the first m(r1,1) elements on the diagonal and the
other elements on the diagonal rj,j are different from r1,1, then define the matrix V such that V =[
Vm(r1,1)×m(r1,1) 0

0 I(nz−m(r1,1))

]
, where Vm(r1,1)×m(r1,1) is an orthonormal matrix. Consequently,

there exists an infinity of admissible V matrices such that Vm(r1,1)×m(r1,1) is orthonormal. This
argument can be generalised to more than one diagonal element with multiplicity. A sufficient
condition for local identification is therefore that matrix R be diagonal with distinct diagonal
elements (ri,i ̸= rj,j , ∀i ̸= j).

.4 Proof of Proposition 3.

By R̃ = V RV ′, one show that the only admissible matrix V which satisfies R̃V = V R for lower
triangular matrices R̃ and R is V = Inz . Since V is of full rank and orthonormal and R̃ = V RV ′,
R̃ and R have the same eigenvalues. Moreover, the eigenvalues of a lower triangular matrix are
the elements on the diagonal. By R̃V = V R, we have

[(Inz ⊗ R̃) − (R′ ⊗ Inz )]vec(V ) = 0. (27)

This implies that vec(V ) belong to the null space of A = [(Inz ⊗ R̃) − (R′ ⊗ Inz )]. Since R̃
and R have nz common roots, the null space of A has a dimension equal to nz. The system of
equations (27) can be written more explicitly as:

(R̃− µ1I) −r2,1I −r3,1I · · · −rnz ,1I

0 (R̃− µ2I) −r3,2I · · · −rnz ,2I
... . . . ...
0 0 · · · (R̃− µnz−1I) −rnz ,nz−1I

0 0 · · · 0 (R̃− µnzI)




V[.,1]
V[.,2]

...
V[.,nz−1]
V[.,nz]

 =


0
0
...
0
0

 ,

with V[.,i] a vector containing the i-th column of matrix V , µj for j = 1, . . . , nz are the eigenvalues
of R and the eigenvalues of R̃ and R are the same which are given by the elements on the
diagonal. Under Proposition 3, the eigenvalues µj for j = 1, . . . , nz are the same as the matrix
Λ. Moreover, all sub-matrices (R̃−µjI) are lower triangular since R̃ is lower triangular and the
entire matrix is a block upper triangular matrix.

This system of equations can be solved by forward substitution for the lower triangular block
(R̃−µnzI) to obtain the vector V[.,nz ] and by backward substitution for the upper block diagonal
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matrices. Thus, the lower triangular form of the system of equations (R̃−µnzI)V[.,nz ] = 0 implies
that the elements of V[.,nz ] are equal to zero except the last one Vnz ,nz . Indeed the recursive form
of the equations allows to rewrite the system of equations as∑i

j=1 r̂
nz
i,jVj,nz = 0 for i = 1, . . . , nz,

which imply that Vj,nz = 0 except for Vnz ,nz where r̂nz
i,j is the element (i, j) of the sub-matrix

(R̃− µnzI) and r̂nz
nz ,nz

= 0 since R and R̃ share the same eigenvalues. According to Proposition
3, this holds under the weaker restriction that only the first sub-diagonal elements are different
from zero which implies that r̂nz

1,1V1,nz = 0 and ∑i
j=i−1 r̂

nz
i,jVj,nz = 0 for i = 2, . . . , nz.

Now, for the next upper block, we have

[
(R̃− µnz−1I) −rnz,nz−1I

] [V[.,nz−1]
V[.,nz ]

]
=
[
0
0

]
,

using the preceding result above for V[.,nz ] yields Vj,nz−1 = 0 for all j < nz − 1. We can
continue to solve the following upper blocks by backward substitution to obtain that all elements
of the matrix V above the diagonal are equal to zero: (R̃ − µjI)V[.,j] = 0 for j = nz and
(R̃−µjI)V[.,j] =

∑nz
i=j+1(ri,jI)V[.,i] for j = 1, . . . nz − 1. The resulting matrix V has all elements

above the diagonal equal to zero which implies that the only admissible orthonormal matrix is
V = I (up to changes of sign and/or permutation of the identity matrix).

.5 Proof of Proposition 4.

Consider the following general 2 × 2 symmetric matrix R =
[
ρ1 τ
τ ρ2

]
where ρ1, ρ2 and τ are

real numbers and τ ̸= 0. The eigenvalues are the roots of the following characteristic equation:∣∣∣∣∣ρ1 − λ τ
τ ρ2 − λ

∣∣∣∣∣ = (ρ1 − λ)(ρ2 − λ) − τ2 = λ2 − λ(ρ1 + ρ2) + ρ1ρ2 − τ2.

The two roots can be written as λ1,2 = 1
2

[
ρ1 + ρ2 ±

√
(ρ1 − ρ2)2 + 4τ2

]
. Since (ρ1−ρ2)2+4τ2 >

0, the two eigenvalues are necessarily real. By the expressions of λ1 and λ2, there exists an
infinity of values for ρ1, ρ2 and τ that gives the same eigenvalues. In other words, for any
orthonormal matrix V and R̃ = V RV ′, the matrices R̃ and R are similar and therefore have
the same eigenvalues. The matrix R is then not identifiable.

Now consider the case where the elements on the diagonal have the same value, i.e. ρ1 =
ρ2 = ρ. The two eigenvalues are now given by = λ1,2 = ρ ± τ , so that λ1 + λ2 = 2ρ and
λ1 − λ2 = 2τ . This implies that there does not exist another 2 × 2 symmetric matrix R̃ with
ρ̃ ̸= ρ and/or τ̃ ̸= τ with τ̃ ̸= 0 having the same eigenvalues as matrix R. In this particular
case, matrix R is then locally identifiable.

.6 Proof of Proposition 5.

We can consider cases with a block diagonal matrix R with blocks corresponding to the two

preceding cases. For example R =
[
R̃ 0
0 R2

]
, where R̃ is a (nz1 × nz1) diagonal matrix with

different elements on the diagonal and R2 is any (nz2 × nz2) matrix with z1 + z2 = z. In this
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case, matrix V has the form V =
[
I 0
0 Vnz2×nz2

]
, where Vnz2×nz2 is an orthonormal matrix. The

first z1 exogenous processes are then locally identified. Matrix R̃ could be also lower triangular.
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Additional Online Material
.7 Presence of Unobserved State Variables

We investigate the the case of a vector Xt consisting of both observed, Yt, and unobserved state
variables, Kt (i.e. Xt = (Kt, Yt)′). This implies, in particular, that Πyk is not necessarily equal
to the identity matrix, and, more importantly, that Πyz ̸= 0. The standard RBC model studied
in McGrattan (2010) is a typical example of such a situation as the capital stock may not be
directly observed (or at least not without measurement errors) by the econometrician. In that
case, the model takes the form of System (2).

As for the previous case, we impose that Yt has the same dimension as Zt (ny = nz). We
consider the case where Zt consists of at least two elements and where there are not more state
variables than elements in Zt. Without loss of generality we take Kt to be of the same order
as Zt by allowing G to be possibly less than full rank.21 Moreover, we assume that F , Πyk and
R are full rank. Note that this does not preclude Πyz from being less than full rank and even
possibly zero.

Making use of these assumptions, the dynamics of Yt can be expressed as

Yt = C1Yt−1 + C2Zt + C3Zt−1 (28)

where C1 = ΠykGΠ−1
yk , C2 = ΠykF + Πyz and C3 = −ΠykGΠ−1

yk Πyz. The issue is then whether,
when R is diagonal (or lower triangular), C1, C2, C3 and R can be identified.22

Making use of the Zt process in (28), it is easy to show that the vector of observed variables
Yt follows a VARMA(2,1) process of the form

Yt =
(
DRD−1 + C1

)
Yt−1 −DRD−1C1Yt−2 + C2εt + (D −DRD−1C2)εt−1.

where D ≡ C3 + C2R. Key for this result is the fact that D be invertible, which is guaranteed
by the full rank assumption we placed on G, Πyk and R.

As in the previous case, counting the number of coefficients to uncover and the number
of moments the VARMA(2,1) structure offers, we recover that imposing a lower triangular
structure on R provides us with the right number of restrictions. Note that this does not
generically guarantees identification, as the system that needs to be solved features a quadratic
term implying that a pair of solutions generally arise. However, as long as R is sparser than
a triangular matrix, the system features more equations than unknowns. The order condition
is then clearly satisfied (in fact, it is over-identified). As before, checking the rank condition is
non trivial, and we follow another strategy in the paper to formally prove identification.

21This is without loss of generality if, when the number of state variables is less than the dimension of Zt, we
add non state variables in the first equation allowing G to potentially have columns of zeroes.

22Note that while G, F and Πyk cannot (in general) be identified separately. This is however not an issue as
far as the identification of the structural impulse responses is concerned as all that is needed is the identification
of R and Cs. Indeed, we will identify ΠykGΠ−1

yk , ΠykF , Πyz and R.
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.8 Partial Identification: An Example

Let us consider the textbook 3-equation NK model developed in Example 1 in the main text and
let us introduce a monetary policy shock, labeled z3,t, that exogenously shifts the interest rate
set by the monetary authority —i.e. it = αππt + z3,t. To ease exposition, we assume that the
two shocks z1,t and z2,t are not serially correlated, while third one z3,t is. As will be clear later,
the two serially uncorrelated shocks cannot be separately identified, whereas the third one one
can be identified as long as it is serially correlated. Just as in Example 1, assuming the Taylor
principle holds, the model can be solved forward and yields the state-space representation

Xt = FZt,

where F is a (3 × 3) matrix. The vector Xt = (yt, πt, it)′ gathers the three endogenous variables
and Zt = (z1,t, z2,t, z3,t)′ is the vector of the three structural shocks. Given our assumptions on
the dynamics of the shocks, Zt evolves as

Zt = RZt−1 + εt where R =

0 0 0
0 0 0
0 0 ρ

 and εt =

ε1,t
ε2,t
ε3,t

 .
εt is a zero mean weak white noise and E(εtε′

t) = I3.
Similarly to Example 1, the moving average representation of output (likewise for the infla-

tion rate and the nominal interest rate) writes

yt = f11ε1,t + f12ε2,t + f13

∞∑
i=0

ρiε3,t−i,

from which we get the output auto-covariance functions as

γy(0) = f2
11 + f2

12 + f2
13

1 − ρ2 when h = 0,

γy(h) = f2
13ρ

h

1 − ρ2 when h > 0.

The persistence parameter ρ can be directly identified by computing the ratio γy(h+ 1)/γy(h)
for h > 0, which is free from any parameter f13. Given ρ, the direct observation of γy(h), for
any h > 0, allows to recover parameter f13 (up to a sign term). In other words, the effect
of a monetary policy shock on output is identified. Applying the same procedure on inflation
and the nominal interest allows for the identification of f23 and f33 (up to a sign term). It
is therefore possible to identify the monetary transmission mechanism for all variables in the
D-SVAR model.

Note that, on the contrary, the knowledge of γy(0) only helps identify the sum f2
11 +f2

12, not
f11 and f12 separately, In other words, the effect of two remaining shocks ε1,t and ε2,t cannot be
separately identified. The reason for this result is that the dynamics of these two shocks do not
bring any information to disentangle them. This result obviously extends to the inflation rate
and the nominal interest rate. This example simply illustrates that one shock can be identified
in so far as it displays a dynamic structure that differs from the other shocks in the economy.
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.9 Data Appendix

.9.1 Data from Section 2.3

• Real GDP is measured as the ratio of Gross Domestic Product in value (Table 1.1.5 from
BEA) divided by the GDP price index (Table 1.1.4 from BEA), and is expressed in per
capita term by dividing by the Civilian non-institutional population from 16 years of age
and older residing in the 50 states and the District of Columbia (CNP16OV in the Federal
Reserve DataBase (FRED, http://fred.stlouisfed.org)).

• The unemployment gap is measured as the difference between the average unemploy-
ment rate over a quarter (UNRATE from FRED) and the natural rate of unemployment —
i.e. the rate of unemployment arising from all sources except fluctuations in aggregate
demand (NROU from FRED).

.9.2 Data from Section 5.1

The data from Section 5.1 are borrowed from Gertler and Karadi (2015) and are downloadable
from http://doi.org/10.3886/E114082V1

• The price level is measured by the Consumer Price Index for all urban consumers
(CPIAUCSL from FRED, All Items in U.S. City Average)

• Economic activity is measured by the industrial production index (INDPRO from FRED)

• The nominal interest rate is measured by the Market Yield on U.S. Treasury Securities
at 1-Year Constant Maturity (GS1 fom FRED)

• The credit spread is measured by the Gilchrist and Zakrajšek (2012) excess bond pre-
mium.

• The external instrument corresponds to the three month ahead monthly fed funds
futures (FF4 from Gertler and Karadi (2015))

The price level and the economic activity index are both expressed in logs prior to estimation.

.9.3 Data from Section 5.2

• The nominal interest rate is measured by the Effective Federal Funds Rate (DFF from
FRED).

• Output is measured as the Real Gross Domestic Product expressed in Billions of Chained
2012 Dollars (GDPC1 from FRED, Quarterly, Seasonally Adjusted Annual Rate).

• The price level is measured by the Consumer Price Index for all items for the United
States (CPALTT01USM661S from FRED, Index 2015=100, Quarterly, Seasonally Adjusted).
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• The unemployment rate corresponds to the quarterly average of the monthly unem-
ployment rate in the US (UNRATE from FRED, Percent, Quarterly, Seasonally Adjusted)

• The commodity price is the Producer Price Index of all commodities (PPIACO from
FRED, Index 1982=100, Quarterly).

Output, the Price level and the commodity price are all transformed by applying the log function
prior to estimation.
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.10 The Bivariate D-SVAR of Section 2.3

As is well-know (see, e.g. Fernald (2007)), Blanchard and Quah (1989) identification is sensitive
to the long-run properties of the variables since it requires the estimation of the spectral density
of, at least, one variable at frequency 0 —an object which is usually hard to estimate and at
best very imprecise. This makes this approach quite non robust in case of trend breaks. The
Great Financial Crisis (GFC) of 2008 presents the econometrician with such a challenge, as
illustrated in Figure 6.
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Figure 6: Output per Capita (in logs)
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Sample is 1960Q1-20197Q4. y is the real GDP, u is the unemployment rate gap. Estimation is done with (∆y,u)
using two lags. The grey area represents 68% confidence bands obtained from 1,000 Bootstrap replications.

Figure 7: Impulse Response Functions: 1960Q1-2019Q4

As illustrated in Figure 7 and Table 3, when the sample period is extended up to 2019Q4,
the dynamic implications of the two shocks ε1 and ε2 essentially remain unaffected both for
output and the unemployment gap. ε1 can still be interpreted as the “permanent” shock, ε2 as
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Table 3: Forecast Error Variance Decomposition, Extended sample 1960Q1–2019Q4
Output Unemployment gap

Horizon ε1 ε2 εP εT ε1 ε2 εP εT

1 27.7 72.3 79.7 20.3 16.8 83.2 1.6 98.4
4 20.6 79.4 72.6 27.4 4.7 95.3 17.0 83.0
8 21.9 78.1 73.7 26.3 2.6 97.4 25.0 75.0
20 32.6 67.4 81.5 18.5 2.0 98.0 28.5 71.5
∞ 65.8 34.2 100.0 0.0 2.0 98.0 28.6 71.4

Sample is 1960Q1-2019Q4. Estimation is done with (∆y,u) using two lags, where y is the real GDP and u is the
unemployment rate gap. ε1 and ε2 correspond to the D-SVAR, εP and εT to Blanchard and Quah (1989).

the “transitory” shock, and the shape of the response of both output and the unemployment
gap to both shocks and the associated forecast error variance decomposition are essentially
unaffected by the shift to the extended sample. Things are different in so far as the BQ
decomposition is concerned. The black dash line in Figure 7 reports the dynamics of output
and the unemployment gap to both the permanent and transitory shocks, as recovered by BQ’s
identification. As evident by comparing Figures 1 and 7 the response of both variables to the
permanent shock are largely affected by the extension of the sample. More strikingly, this
extension leads to a reversal in the respective contribution of the shocks to output dynamics:
the permanent shock now becomes the main driver of output dynamics (see Panel (b) of Table
1). As soon as output dynamics is corrected for the trend break, the responses to a permanent
shock resembles those to ε1 in our VAR. Figure 8 shows that, correcting for trend breaks leads
to an increase in the correlation between BQ shocks and the shocks as identified by the D-
SVAR (from 0.85 to 0.95). The gains from the dynamic identification are then clear: by not
directly relying on long-run restrictions, the D-SVAR is much less sensitive to breaks in variables
featuring a trend.
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(a) Raw Data
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(b) Correcting for Trend Break
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Sample is 1960Q1-2019Q4. Estimation is done with (∆y,u) using two lags, where y is the real GDP and u is the
unemployment rate gap.

Figure 8: Correlation between D-SVAR and BQ shocks: 1960Q1-2019Q4
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.11 Additional Material for Section 5.1

(a) Impulse Response Function to ε2
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(b) Impulse Response Function to ε3
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(c) Impulse Response Function to ε4
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Gertler and Karadi (2015) D-SVAR

On the four panels, the black line is the response to a monetary policy shock, as identified following Gertler
and Karadi (2015). The grey line is the response to shock in the D-SVAR. Shaded area represent ± 1 standard
deviation around average D-SVAR response obtained from 1,000 Bootstrap replications. Sample is 1979M7-
2012M6.

Figure 9: Responses to Gertler and Karadi (2015) monetary policy shock and D-SVAR’s shocks
with Lower Triangular R Matrix (ε2–ε4)
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.12 Additional Material for Section 5.2
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Black line: response to a monetary policy shock, as identified following Christiano et al. (1999). Grey line:
response to shock ε4 in the D-SVAR. Shaded area: ± 1 standard deviation around average D-SVAR response
obtained from 1,000 Bootstrap replications. Sample is 1965Q1-2007Q4.

Figure 10: Responses to Christiano et al. (1999) monetary policy shock and D-SVAR’s shock
ε2
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Black line: response to a monetary policy shock, as identified following Christiano et al. (1999). Grey line:
response to shock ε4 in the D-SVAR. Shaded area: ± 1 standard deviation around average D-SVAR response
obtained from 1,000 Bootstrap replications. Sample is 1965Q1-2007Q4.

Figure 11: Responses to Christiano et al. (1999) monetary policy shock and D-SVAR’s shock
ε3
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Black line: response to a monetary policy shock, as identified following Christiano et al. (1999). Grey line:
response to shock ε4 in the D-SVAR. Shaded area: ± 1 standard deviation around average D-SVAR response
obtained from 1,000 Bootstrap replications. Sample is 1965Q1-2007Q4.

Figure 12: Responses to Christiano et al. (1999) monetary policy shock and D-SVAR’s shock
ε4
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Black line: response to a monetary policy shock, as identified following Christiano et al. (1999). Grey line:
response to shock ε4 in the D-SVAR. Shaded area: ± 1 standard deviation around average D-SVAR response
obtained from 1,000 Bootstrap replications. Sample is 1965Q1-2007Q4.

Figure 13: Responses to Christiano et al. (1999) monetary policy shock and D-SVAR’s shock
ε5

Table 4: Correlation between CEE’s MP Shock and DSVAR Shocks

ε1 ε2 ε3 ε4 ε5

Corr 0.928 -0.005 -0.342 0.094 0.097
p(0) 0.000 0.986 0.353 0.695 0.652
p(1) 0.665 0.013 0.015 0.035 0.011

Note: Corr reports the correlation between the CEE Monetary Policy Shock and each of the shock as identified
by our DSVAR. p(0) (resp. p(1)) reports the p-value associated to the Wald test of a unit (resp. zero) correlation
between the CEE Monetary Policy Shock and each of the shock as identified by our DSVAR. This p-value is
obtained by means of 1,000 bootstrap, so as to accommodate for the fact that both shocks are generated by an
estimated VAR model and are hence contaminated by the uncertainty surrounding the estimated coefficients of
the VAR.
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Table 5: Forecast Error Variance Decomposition of (in %)

Christiano et al. (1999) D-SVAR
Horizon εR ε1 ε2 ε3 ε4 ε5

Nominal Interest Rate
1 66.79 74.37 20.16 0.09 1.50 3.89
4 26.03 42.62 37.11 19.00 0.32 0.94
8 17.74 34.46 29.15 19.75 5.36 11.28
20 13.39 31.30 27.11 21.18 7.42 12.99
Output
1 0.00 6.08 11.72 14.39 4.77 63.04
4 2.47 3.01 9.65 15.92 7.38 64.04
8 5.47 3.22 5.47 8.92 7.38 75.01
20 5.95 3.48 4.12 6.23 4.81 81.36
Price Index (CPI)
1 0.00 2.16 0.30 40.50 55.86 1.17
4 1.80 9.12 4.80 40.62 44.78 0.68
8 1.04 8.83 4.36 46.40 39.72 0.70
20 0.23 5.44 1.66 46.05 45.27 1.58
Unemployment
1 0.00 5.61 50.38 29.17 14.64 0.20
4 0.46 6.51 37.46 29.12 21.81 5.11
8 5.70 5.93 25.66 21.69 29.76 16.97
20 6.47 13.22 20.87 22.49 28.28 15.14
Commodity Price
1 0.00 0.37 37.40 0.42 61.19 0.62
4 0.37 0.89 29.19 8.12 61.34 0.47
8 0.13 0.56 21.06 12.05 65.98 0.35
20 0.49 0.14 9.86 12.86 76.95 0.19

In this table we compare the variance decomposition as obtained by Christiano et al. (1999) for their monetary
policy shocks and for the five shocks of the D-SVAR. Sample is 1965Q1-2007Q4.
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.13 A Two-Country VAR

In this section, we consider the modelling of a 2-country VAR featuring the log-difference of
US GDP and residual of the cointegration relationship (1,-0.63) between the Euro Area and
US real GDP for the 1995Q1-2019Q4 period as reported by OECD (https://stats.oecd.
org/, VPVOBARSA, US Dollars, volume estimates at fixed PPP, seasonally adjusted). In this
example, we illustrate how the D-SVAR allows to recover a shock structure à’ la Backus et al.
(1992) involving dynamic symmetric spillovers. More precisely the shock process is assumed to
take the form

Zt ≡
(
zust
zcant

)
=
[
ρ ν
ν ρ

]
Zt−1 + εt with εt ; N(02, I2),

where ν captures the dynamic spillovers. Both the AIC, BIC and Hannan-Quinn information
criteria led us to select a VAR(2) specification. The D-SVAR identification then leads to a value
of ρ = 0.43 and ν = 0.20. The loading matrix B then takes the form

B =
[

0.498 0.053
−0.229 0.360

]

The forecast error variance decomposition of levels is reported in Table 6.. While the US shock
explain essentially all of US GDP, it accounts for less than 5%the Euro volatility in the very
short-run and 56% at the 20 quarters horizon. In other words, in the very short-run, the US and
Euro Area economies are essentially insulated from each other, while the shocks are transmitted
in the medium run. Figure 14 reports the IRF of US and Euro GDP to both shocks. These IRF
confirm and illustrate the broad picture conveyed by forecast error volatility decomposition: US
and Euro GDP only responds to their respective shocks on impact, and are essentially insulated
from exogenous developments in the other economy in the very short-run. This is actually
slightly contrasts with an identification of the US shock as the only shock that affects US GDP
on impact. In that latter case, the US shock is transmitted faster to the Euro Area: the US
shock accounts for about 10% of the Euro output volatility on impact and about 40% after 1
year (30% in our case). In the longer run, the Cholesky decomposition indicates that while
the US economy is essentially not affected by Euro shocks, US shocks account for 60% of GDP
volatility in the Euro Area.
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Table 6: Forecast Error Decomposition

US GDP Euro Area GDP
Horizon εust εeurot εust εeurot

D-SVAR
1 98.9 1.1 4.6 95.4
4 96.4 3.6 29.3 70.7
8 97.8 2.2 40.9 59.1
20 93.6 6.4 60.8 39.2
Short-Run Restriction
1 100.0 0.0 10.0 90.0
4 99.6 0.4 38.3 61.7
8 96.7 3.3 56.5 43.5
20 68.7 31.3 67.0 33.0

The variance decomposition is obtained from a bivariate D-SVAR or a SVAR with a short-run restriction. Vari-
ables are the log-difference of US GDP and the residual of the cointegration relationship (1,-0.63) between the
Euro Area and US real GDP. Sample is 1995Q1-2019Q4.
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Figure 14: Impulse Response Functions: US vs Euro Area
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A Assessing the Ability of DSVAR to Recover Theoretical Shocks

In this section, we assess the ability of the D-SVAR approach to recover the IRF of a theoretical
model. More precisely, we will consider successively a canonical New Keynesian model and
a Real Business Cycle model and use each of them as Data Generating Process to simulate
artificial time series. We then estimate a D-SVAR on those series and ask whether it recovers
the IRF to the true structural shocks.

A.1 A New Keynesian Model
A.1.1 Description of the Model

The set up is standard. The economy is populated by a large number of identical infinitely–
lived households and economy consists of two sectors: one producing intermediate goods and
the other final goods. The intermediate good is produced with labor and the final good with
intermediate goods.

The Household: Household preferences are characterised by the lifetime utility function:23

Et
∞∑
τ=0

βτωt

(
(ct+τ − hct+τ−1)1−γ

1 − γ
− ϑ

n1+φ
t+τ

1 + φ

)
(29)

where 0 < β < 1 is a constant discount factor, c denotes consumption and n labor.
In each and every period, the representative household faces a budget constraint of the form

Bt + Ptct ≤ Rt−1Bt−1 + Πt + Ptwtnt (30)

where Bt are nominal bonds acquired during period t, Pt is the nominal price of the final good,
Rt−1 is the nominal interest rate, wt denotes the real wage. The household consumes ct and
supplies nt units of labor and claims the profits, Πt, earned by the firms. ωt will act as a demand
shock and can be interpreted as a premium shock.

The first order conditions lead to

ϑnφt = (ct − hct−1)−γwt (31)

ωt(ct − hct−1)−γ = βRtEt

[
ωt+1(ct+1 − hct)−γ

πt+1

]
(32)

where πt = Pt/Pt−1 denotes the gross inflation rate.

Final sector: The final good is produced by combining intermediate goods. This process is
described by the following CES function

yt =
(∫ 1

0
yt(i)ηtdi

) 1
ηt

(33)

23Et(.) denotes mathematical conditional expectations. Expectations are conditional on information available
at the beginning of period t.
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where ηt ∈ (−∞, 1). ηt determines the elasticity of substitution between the various inputs,
which will be modelled as a stochastic process and will appear as a cost push shock in the New
Keynesian Phillips curve. The producers in this sector are assumed to behave competitively
and to determine their demand for each good, yt(i), i ∈ (0, 1) by maximising the static profit
equation

max
{Xt(i)}i∈(0,1)

Ptyt −
∫ 1

0
Pt(i)yt(i)di (34)

subject to (33), where Pt(i) denotes the price of intermediate good i. This yields demand
functions of the form:

yt(i) =
(
Pt(i)
Pt

) 1
ηt−1

yt (35)

and the following general price index

Pt =
(∫ 1

0
Pt(i)

ηt
ηt−1 di

) ηt−1
ηt

(36)

The final good may be used for consumption — private or public — and investment purposes.

Intermediate Good Producers: Each firm i, i ∈ (0, 1), produces an intermediate good by
means of capital and labor according to a constant returns–to–scale technology, represented by
the production function

yt(i) = nt(i) (37)

where nt(i) denotes the labor input used by firm i in the production process. at is an exoge-
nous stationary stochastic technology shock. Assuming that each firm i operates under perfect
competition in the input markets, the firm determines its production plan so as to minimise its
total cost

min
{ht(i)}

Ptwtnt(i)

subject to (37). This yields to the following expression for total costs:

Ptstyt(i)

where the real marginal cost, st, is simply given by wt.

Intermediate goods producers are monopolistically competitive, and therefore set prices for
the good they produce. We follow Calvo [1983] in assuming that firms set their prices for a
stochastic number of periods. In each and every period, a firm either gets the chance to adjust
its price (an event occurring with probability 1−α) or it does not. When the firm does not reset
its price, it just applies steady state inflation to the price it charged in the last period such that
Pt(i) = πζt−1π

1−ζPt−1(i). When it gets a chance to do it, firm i resets its price, P̃t(i), in period t
in order to maximise its expected discounted profit flow this new price will generate. In period
t, the profit is given by Π(P̃t(i)). In period t + 1, either the firm resets its price, such that it
will get Π(P̃t+1(i)) with probability α, or it does not and its t+ 1 profit will be Π(Xt,t+1P̃t(i))
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with probability (1 − α). Likewise in t + 2. Expected profit flow generated by setting P̃t(i) in
period t writes

max
P̃t(i)

Et
∞∑
τ=0

Φt,t+τα
τ−1Π(Xt,t+τ P̃t(i))

subject to the total demand it faces:

yt(i) =
(
P̃t(i)
Pt

) 1
η−1

yt

where Xt,t+1 = πζt π
1−ζXt−1,t and Π(Xt,t+τ P̃t(i)) =

(
Xt,t+τ P̃t(i) − Pt+τst+τ

)
yt+τ (i). Φt+τ is

an appropriate discount factor related to the way the household values future as opposed to
current consumption, such that

Φt,t+τ ∝ βτ
Λt+τ
Λt

where Λt+τ ≡ ωt+τ (ct+τ − hct+τ−1)−γ

This leads to the price setting equation

Et

[ ∞∑
τ=0

(βα)τ Λt,t+τ
ηt+τ − 1

(
ηt+τXt,t+τ P̃t(i) − Pt+τst+τ

)
yt+τ (i)

]
= 0 (38)

From the definition of the aggregate price (36) and the Calvo fairy assumption, the aggregate
price level may be expressed as

Pt =

 ∞∑
j=0

(1 − α)αj(Xt−j,tP̃t−j)
ηt

ηt−1


ηt−1

ηt

(39)

Monetary Authorities: Monetary authorities are assumed to follow a Taylor rule of the
form (in log-linear deviations from deterministic steady state)

it = ρrit−1 + (1 − ρr)(ϕππt + ϕyyt) + ϵi,t

where |ρr| < 1 and ϕy, ϕπ > 0.

Equilibrium: An equilibrium of this economy is a sequence of prices {Pt}∞
t=0 = {wt, , Pt, Rt, P̃t}∞

t=0

and a sequence of quantities {Qt}∞
t=0 = {{QH

t }∞
t=0, {QF

t }∞
t=0} with

{QH
t }∞

t=0 = {ct, Bt, nt}∞
t=0

{QF
t }∞

t=0 = {yt, yt(i), nt(i); i ∈ (0, 1)}∞
t=0

such that:

(i) given a sequence of prices {Pt}∞
t=0 and a sequence of shocks, {QH

t }∞
t=0 is a solution to the

representative household’s problem;

(ii) given a sequence of prices {Pt}∞
t=0 and a sequence of shocks, {QF

t }∞
t=0 is a solution to the

representative firms’ problem;
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(iii) given a sequence of quantities {Qt}∞
t=0 and a sequence of shocks, {Pt}∞

t=0 clears the markets.
In particular, we have

∫ 1
0 yt(i)di = ct and

∫ 1
0 nt(i)di = nt.

(iv) Prices satisfy (38) and (39).

Log-linearisation of the equilibrium around the deterministic steady state gives rise to the
following three (log-)linearised equations

yt = h

1 + h
yt−1 + 1

1 + h
Et[yt+1] − 1 − h

γ(1 + h)
(it − Et[πt+1]) + zd,t (40)

πt = ζ

1 + βζ
πt−1 + β

1 + βζ
Et[πt+1] + (1 − α)(1 − βα)

α(1 + βζ)
(γ + φ)yt + zs,t (41)

it = ρrit−1 + (1 − ρr)(ϕππt + ϕyyt) + zr,t (42)

with zj,t = ρjzj,t−1 + εj,t, where εj,t ; N(0, σ2
j ) with j ∈ {d, s, r}. As long as the Taylor

principle holds, the solution of the model admits a state space representation of the formytπt
it

 = G(θ)

yt−1
πt−1
it−1

+ F (θ)

z1,t
z2,t
z3,t

 where

z1,t
z2,t
z3,t

 = R(θ)

z1,t−1
z2,t−1
z3,t−1

+

ε1,t
ε2,t
ε3,t


where θ collects all the parameters of the model. The state space representation rewrites as a
VAR(2) as24ytπt

it

 = (G(θ) + F (θ)R(θ)F (θ)−1)

yt−1
πt−1
it−1

− F (θ)R(θ)F (θ)−1G(θ)

yt−2
πt−2
it−2

+ F (θ)

ε1,t
ε2,t
ε3,t


We first estimate the model by a Bayesian Maximum Likelihood Estimation method on

US data excluding the Zero Lower Bound period (1960Q1-2007Q4). Output gap is measured
by the negative of the gap between the unemployment rate and the long-run natural rate of
unemployment. The inflation rate is measured by the annualised quarterly change in GDP
deflator, and the annualised Effective Federal Fund Rate is used as a measure of the nominal
interest rate. Table 7 reports the priors used during the estimation as well as the posterior
mode, mean and 90% high probability density intervals obtained from a MCMC algorithm.

The dynamic properties of the estimated model, as reported in Figure 15, are in line with
the conventional wisdom. A demand shock (left panel of Figure 15) rises output, inflation and
the nominal interest rate. A cost push shock (center panel) increases inflation, reduces output
and the Fed reacts by raising the policy rate. Finally, the hike in the interest rate that follows
a contractionary monetary policy shock, depresses economic activity and reduces inflation.

A.1.2 Assessing the D-SVAR Approach Using the NK Model as the DGP

We run the following Monte-Carlo experiment. We use the estimated NK model as the DGP for
output, inflation and the nominal interest rate and simulate it 1,000 times over the 1,000,000.

24The VAR representation obtains thanks to the observability of all variables in the state space representation of
the solution. Appendix A.2 considers a standard Real Business Cycle model in which capital cannot be observed
by the econometrician. In that case, the solution does not admit a VAR representation, but a VARMA. We
illustrate that most of the results we will discuss in this section extend to the VARMA case.
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Table 7: New Keynesian Model, Priors and Posteriors

Priors Posteriors
distribution Mean std. dev. Mode Mean 90% HPDI

h Beta 0.50 0.10 0.9082 0.8974 [0.8552;0.9437]
σ Gamma 1.00 0.50 2.2951 2.5200 [1.4757;3.5418]
ϕ Gamma 1.00 0.50 0.5217 0.7183 [0.1540;1.2722]
α Beta 0.50 0.10 0.9074 0.9077 [0.8749;0.9414]
ζ Beta 0.50 0.15 0.0872 0.1073 [0.0375;0.1729]
ρi Beta 0.50 0.20 0.8133 0.8072 [0.7615;0.8562]
ϕπ Normal 1.50 0.25 1.4542 1.4719 [1.1928;1.7406]
ϕy Normal 0.10 0.05 0.1391 0.1382 [0.0666;0.2112]
ρd Beta 0.50 0.20 0.5869 0.5867 [0.4980;0.6728]
ρs Beta 0.50 0.20 0.8981 0.8909 [0.8364;0.9471]
ρr Beta 0.50 0.20 0.2310 0.2454 [0.1305;0.3630]
σd Inv. Gamma 0.10 2.00 0.0598 0.0609 [0.0480;0.0738]
σs Inv. Gamma 0.10 2.00 0.0388 0.0421 [0.0308;0.0533]
σr Inv. Gamma 0.10 2.00 0.2268 0.2301 [0.2099;0.2499]

Notes: The estimated model is the New Keynesian (40)–(42). Sample is 1960Q1-2007Q4. Estimation is done with
minus the unemployment gap, GDP deflator inflation and the Federal fund rate. Posterior distribution obtained
from MCMC using 2 chains of 200,000 draws each.

Figure 15: Impulse responses, Estimated New-Keynesian Model
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We report here the average theoretical impulse response function (IRF) of output, inflation and the nominal
interest rate across the MCMC chains. The estimated model is the New Keynesian (40)–(42). Sample is 1960Q1-
2007Q4. Estimation is done with minus the unemployment gap (“output”), GDP deflator inflation and the
Federal fund rate.
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Figure 16: Impulse responses, NK model vs D-SVAR Estimated on Simulated Data
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(b) Cost-Push Shock
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(c) Monetary Policy Shock
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The estimated model is a D-SVAR with two lags, data are generated by the estimated New Keynesian model. We
report the average of 1,000 estimations of length 1,000,000. The shaded area corresponds to the 95% confidence
band of each IRF in the theoretical model, as obtained from the MCMC chains.

For each simulation, we estimate the following unrestricted VARytπt
it

 = Φ1

yt−1
πt−1
it−1

+ Φ2

yt−2
πt−2
it−2

+

u1,t
u2,t
u3,t


and then recover the D-SVAR representationytπt

it

 = G

yt−1
πt−1
it−1

+ F

z1,t
z2,t
z3,t

 where

z1,t
z2,t
z3,t

 = R

z1,t−1
z2,t−1
z3,t−1

+

ε1,t
ε2,t
ε3,t


using the ALS estimation method. We then compute the response of each variable to each shock.
Figure 16 reports for each shock the New Keynesian model average theoretical IRF of output,
inflation and the nominal interest rate across the MCMC chains (the ones already reported on
Figure 16) (plain dark line) alongside the average IRF as recovered from the simulated D-SVAR
(bullet plain line). The shaded area corresponds to the 95% confidence band of each IRF in the
theoretical model, as obtained from the MCMC chains.

Note that the three shocks are unlabelled in the D-SVAR, so we order them by minimizing
the distance between the model structural shock and each D-SVAR shock. Inspection of the
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Figure 17: Impulse responses, New Keynesian Model vs D-SVAR Estimated on Actual Data
(a) ε1: IS Shock
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(b) ε2: Cost-Push Shock
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(c) ε3: Monetary Policy Shock

5 10 15 20
Quarters

0.5

0.0

0.5

Output

5 10 15 20
Quarters

0.4

0.2

0.0

0.2

0.4
Inflation Rate

5 10 15 20
Quarters

0.2

0.1

0.0

0.1

0.2

Nominal Interest Rate

D-SVAR (Actual Data) NK Model

The estimated model are the New Keynesian (40)–(42) and a D-SVAR with two lags, using actual data over
the sample 1960Q1-2007Q4. Estimation is done with minus the unemployment gap (“output”), GDP deflator
inflation and the Federal fund rate. The shaded area correspond to the D-SVAR 95% confidence band as obtained
from bootstrap (1,000 draws).

figure suggests that the D-SVAR allows to recover exactly the three structural shocks: the IRF
are on top of each other.

A.1.3 Assessing the Cross-Equation Restrictions of the NK Model

We first estimate an unrestricted VAR on the same data we used to estimate the New Keynesian
model, and use it as an auxiliary model to recover the D-SVAR representation by ALS. Figure 17
then reports the impulse response functions of output, inflation and the interest rate as obtained
from the D-SVAR along with their 95% confidence bands. Again, we order the responses by
similarity with the theoretical ones. Note that this set of impulse responses ought to differ
from those of the estimated New Keynesian model. Indeed, although the two models share the
same dynamic structure (same variables, same lags, same processes for the latent exogenous
variables), the New Keynesian model estimation imposes more cross-equation restrictions than
in the D-SVAR. Strikingly, the responses, as recovered from our D-SVAR (plain line), show
similarities with the theoretical responses (dashed line).

Comparison of the theoretical and data IRF shows that responses to a demand shock are
similarly estimated by the New Keynesian model and the D-SVAR, although inflation response
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to the ε1 shock is negative on impact. There is a shock in the D-SVAR, ε2, that does increase
inflation and the nominal interest rate and decreases output after five periods, as does the cost
push in the New Keynesian model. But the short-run response of output is positive in the
D-SVAR, which is not the typical prediction of a New Keynesian model. As far as the monetary
shock is concerned, the ε3 shock in the D-SVAR is indeed increasing the nominal interest rate
and decreasing output, but it increases inflation in the short-run, while inflation response is
always negative in the estimated New Keynesian model. Such a “price puzzle” is reminiscent
of the results in Beaudry et al. (2020), and can be rationalized in a model with a flat Phillips
curve and a cost channel. Note that scale of the responses to that shock also speaks in favor
of a flat Phillips curve: the response of output is of the same magnitude in the New Keynesian
and D-SVAR model, while the response of the nominal interest is more than twice as small in
the D-SVAR, while inflation is barely moving. Overall, much of the joint dynamics estimated
with the New Keynesian model can already be uncovered with the D-SVAR, without having to
impose all the cross-equation restrictions of the DSGE.
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A.2 A Real Business Cycle Model

We consider a real business cycle model featuring a catching up with the Joneses mechanism and
real frictions on the capital accumulation process that take the form of investment adjustment
costs. The problem of the Central planner takes the form

maxEt

[+∞∑
τ=0

βτ
(

log(Ct+τ − bCt+τ−1) − ϑ−1
t+τ

h1+ν
t+τ

1 + ν

)]
Ct + It = AtK

α
t (Γtht)1−α

Kt+1 = ζtIt

(
1 − Φ

(
It
It−1

))
+ (1 − δ)Kt

where β ∈ (0, 1) denotes the discount factor, b ∈ (0, 1) governs habit persistence, ν > 0 is the
inverse of the Frish elasticity, α ∈ (0, 1) is capital elasticity and the function Φ(·) is strictly
increasing and convex and satisfies Φ(γ) = Φ′(γ) = 0. Et[·] denotes the conditional expectation
operator. Furthermore, φ ≡ Φ′′(γ)γ > 0 governs the importance of investment adjustment costs.
Γt denotes exogenous technological progress that evolves deterministically as Γt = γΓt−1, γ > 1.
Finally ϑt, At and ζt denote respectively a labor wedge, a technology and an investment specific
shock, which are all assumed to follow a stationary AR(1) process of the form

log(Xt) = ρX log(Xt−1) + εXt for x ∈ {ϑ,A, ζ}

where |ρX | < 1 and εX ; N(0, σ2
X). The (deflated for growth, xt = Xt/Γt) optimal allocation

of this economy is then characterised by the set of equations

hνt = (1 − α) yt
ht

γϑt
γct − bct−1

1 = β

γ
Et
[
γct − bct−1
γct+1 − bct

(
α
yt+1
kt+1

+ (1 − δ)qt+1

)]
1 = ζtqt

(
1 − Φ

(
γ
it
it−1

)
− Φ′

(
γ
it
it−1

)
γ
it
it−1

)
+ β

γ
Et
[
γct − bct−1
γct+1 − bct

ζt+1Φ′
(
γ
it+1
it

)
γ
it+1
it

]
yt = Atk

α
t h

1−α
t

yt = ct + it

γkt+1 = ζtit

(
1 − Φ

(
γ
it
it−1

))
+ (1 − δ)kt

where lowercase variable x denotes the deflated for growth variable X (xt = Xt/Γt) for any
X ∈ {Y,C, I,K}. The solution of a log-linearised version of the optimal allocation admits the
state space representation:

Yt = ΠXXt + ΠZZt

Xt+1 = MXXt +MZZt

Zt+1 = RZt + εt

where Xt = (k̂t, ĉt−1, ît−1)′, Yt = (ĉt, ŷt, ît, ĥt, q̂t) and Zt = (ât, ζ̂t, ϑ̂t)′ and εt = (εAt , ε
ζ
t , ε

ϑ
t )′. As

usual in the literature x̂t denotes the log-deviation of variable x from its deterministic steady
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Table 8: Parametrisation

Preferences
β Discount Factor 0.990
b Habit Persistence 0.650
ν Inv. Frish Elasticity 1.000
Technology
α Capital Elasticity 0.330
φ Investment Adjustment Costs 2.500
δ Depreciation Rate 0.025
γ Gross Rate of Growth 1.004
Shock Persistence
ρA Technology Shock 0.950
ρζ Investment Specific Shock 0.810
ρϑ Labor Wedge Shock 0.940
Shock Volatility (in %)
ρA Technology Shock 0.700
ρζ Investment Specific Shock 2.000
ρϑ Labor Wedge Shock 0.800

state. We then assess the ability of the dynamic identification technique developed in the main
text to recover the dynamics of the “true” structural model. The main difference from the
New-Keynesian model investigated in the text is that the structural model features a latent
variable unobserved by the econometrician —e.g. the capital stock.

In order to perform this assessment we parametrise the model by borrowing values for the
structural parameters from the RBC literature (see Table 8). The parameters pertaining to the
investment specific shock are directly borrowed from Justiniano et al. (2011). Those pertaining
to the labor wedge shock are taken from Kascha and Mertens (2009).25 We then run the
following Monte-Carlo experiment. We use the RBC model as the DGP for output, investment
and hours worked and simulate the estimated model 10,000 times over 250 periods. For each
simulation, we estimate the following VARMAytit

ht

 = Φ1

yt−1
it−1
ht−1

+ Φ2

yt−2
it−2
ht−2

+

u1,t
u2,t
u3,t

+ Θ1

u1,t−1
u2,t−1
u3,t−1


and use it as auxiliary model to recover the D-SVARMA representation by ALS asytπt

it

 = G

yt−1
πt−1
it−1

+ F0

z1,t
z2,t
z3,t

+ F1

z1,t−1
z2,t−1
z3,t−1

 where

z1,t
z2,t
z3,t

 = R

z1,t−1
z2,t−1
z3,t−1

+

ε1,t
ε2,t
ε3,t


We then compute the response of each variable to each shock. Figure 18 reports for each
shock the theoretical IRF of output, investment and hours worked (plain dark line) alongside
the average IRF as recovered from the simulated D-SVAR (dashed line). The shaded area
corresponds to the 68% confidence band of each IRF in the simulated model.

25Note that the model does not pretend to be an accurate representation of a specific economy, but is used as
a reasonable DGP to conduct our assessment exercise.
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Figure 18: Impulse responses, RBC model vs Simulated D-SVARMA
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(b) Investment Specific Shock
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(c) Labor Wedge Shock
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Model Simulated D-SVARMA (Finite Sample) Simulated D-SVARMA (Long Sample)

The estimated model is a D-SVARMA(2,1). Data are generated by the calibrated RBC model. Observables are
y, i and h, but k is not observable. Short sample corresponds to the average of 10,000 estimations of length
250 periods. The shaded area represents 68% confidence bands, as computed from the 10,000 simulations. Long
sample corresponds to one simulation of length 1,000,000 periods.
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Note that the three shocks are unlabelled in the D-SVARMA, so we order them by minimising
the distance between the model structural shock and each D-SVARMA shock. Inspection of the
figure suggests that the D-SVARMA allows to recover the three structural shocks: the impulse
response functions share the same shape and the same properties in the model and in the D-
SVARMA. In particular, the D-SVARMA is able to properly recover the short-run response
to the various shocks. Closer inspection however reveals that the match is not perfect. The
D-SVARMA tends to underestimate the response of output, and slightly overestimate that of
hours worked. Two sources of bias are usually taken as the main culprit for this type of imperfect
match: truncation bias and small sample bias. The truncation bias occurs when the state space
representation of the solution is approximated by a finite VAR. This is not the case in our
experiment. As explained above, the state space representation actually admits a VARMA(2,1)
representation, which is precisely the unrestricted model we estimate. The truncation bias is
therefore inoperative in our case. The main culprit is the small sample bias. As we increase
the sample size of our simulations, the bias recedes and eventually vanishes. The grey line with
bullet markers in Figure 18 corresponds to IRF obtained from the D-SVARMA estimated on a
sample of 1,000,000 periods. The match is then perfect. Therefore, our dynamic identification
method asymptotically correctly recovers the theoretical shocks, even in the presence of a latent
variable.
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