
Lecture Notes 2

Towards non–linear methods

In the previous lectures, we dealt with linear economies, for which there exist

straightforward methods to solve the involved expectational difference equa-

tions. However, most of the models we encounter in economics are funda-

mentally characterized by non–linear dynamical features. We therefore need

methods to solve such models. The aim of this chapter is to introduce you

to such methods, by first pointing out the possible drawbacks of simple lin-

earization — a method commonly used in the literature. We will present four

methods which may be used to solve RE models:

1. Perturbation methods (see Judd (1998), Judd and Gaspard (1997), Col-

lard and Juillard (2001a), Collard and Juillard (2001b) or ?)), which

essentially amount to take higher–order Taylor approximation of the

model;

2. Value iteration (see Christiano (1990), Tauchen and Hussey (1991)),

which may be simply thought of as finding a fixed point on an operator;

3. Parameterized Expectations Algorithm (PEA) (see Marcet (1988), Den Haan

and Marcet (1990) or Marcet and Lorenzoni (1999) among others), which

may be thought of as a “generalization” of the method of undetermined

coefficients to the higher order relying on simulations;

4. Minimum weighted residual methods (see Judd (1992), McGrattan (1996),
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McGrattan (1999)), which, as PEA, may be thought of as a “general-

ization” of the method of undetermined coefficients to the higher order

but exploits some orthogonality conditions rather than relying on simu-

lations;

Each method is illustrated by an economic example, which is intended to show

you the potential and simplicity of the method. However, before going to such

methods, we shall now see why linearizing many not always be a good idea.

The big question is then

What are we missing?

2.1 Risk and the Certainty Equivalence Hypothesis

Taking a either linear or log–linear approximation to the decision rules of an

economic model, is actually equivalent to taking a quadratic approximation

to the optimization problem that lies behind the optimal behavior of agents.

In so doing we encounter the so–called Certainty Equivalence property. In

order to understand the certainty equivalence property, let us consider the

following problem. Let us consider that x is a random variable with probability

density g(x) and let y be a variable decided by a decision maker (this may be

consumption for an household, investment or labor for a firm, the price for a

monopolist. . . ). This decision maker has an objective function u(y, x) which

is concave and twice continuously differentiable. Its y plan is then chosen by

solving

max
y

E(u(y, x)) ≡

∫
u(y, x)g(x)dx

The first order condition1 for choosing y is then given by (applying Leibniz

rule)
∂

∂y

∫
u(y, x)g(x)dx = 0⇐⇒

∫
∂

∂y
u(y, x)g(x)dx = 0 (2.1)

1Note that since u(.) is concave and g(.) is positive, this condition is necessary and
sufficient.
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Now, let us assume that u(y, x) is a second order Taylor expansion of

another objective, such that

u(y, x) = (y x)J + (y x)
H

2

(
y
x

)

where H is a negative–definite (2× 2) matrix, such that

u(y, x) = (y x)

(
Jy
Jx

)
+
1

2
(y x)

(
hxx hxy

hyx hyy

)(
y
x

)

= Jyy + Jxx+
1

2

(
hxxx

2 + (hxy + hyx)xy + hyyy
2
)

(2.2)

In such a case, (2.1) rewrites
∫ [

Jy + (hxy + hyx)
x

2
+ hyyy

]
g(x)dx = 0⇐⇒ y = −

2Jy + (hxy + hyx)Ex

2hyy

Now let us consider a situation where the objective of the decision maker

is

max
y

u(y,E(x)) ≡ u

(
y,

∫
xg(x)dx

)

Note that in this case, we are not maximizing the expected value of the problem

but the value, taking into account the expected value of x. Given the functional

form (2.2), the first order condition is now

Jy + (hxy + hyx)
Ex

2
+ hyyy = 0⇐⇒ y = −

2Jy + (hxy + hyx)Ex

2hyy

which is exactly the same as before. In other words, we have — for the

quadratic formulation

Argmax
y

E(u(y, x)) = Argmax
y

u(y,E(x))

This is what is usually called the Certainty equivalence principle: risk does not

matter in decision making, the only thing that matters is the average value

of the random variable x, not its variability. But this is usually not a general

result. Let us consider, for example, the case of Burnside’s [1998] asset pricing

model.

3



2.1.1 An asset–pricing example

This model is a standard asset pricing model for which (i) the marginal in-

tertemporal rate of substitution is an exponential function of the rate of growth

of consumption and (ii) the endowment is a Gaussian exogenous process. As

shown by Burnside (1998), this setting permits to obtain a closed form solution

to the problem. We consider a frictionless pure exchange economy à la Mehra

and Prescott (1985) and Rietz (1988) with a single household and a unique

perishable consumption good produced by a single “tree”. The household can

hold equity shares to transfer wealth from one period to another. The prob-

lem of a single agent is then to choose consumption and equity holdings to

maximize her expected discounted stream of utility, given by

Et

∞∑

τ=0

βτ c
θ
t+τ

θ
with θ ∈ (−∞, 0) ∪ (0, 1] (2.3)

subject to the budget constraint

ptet+1 + ct = (pt + dt)et (2.4)

where β ∈ (0, 1) is the agent’s subjective discount factor, ct is household’s

consumption of a single perishable good at date t, pt denotes the price of the

equity in period t and et is the household’s equity holdings in period t. Finally,

dt is the tree’s dividend in period t. Dividends are assumed to grow at rate xt

such that :

dt = exp(xt)dt−1 (2.5)

where xt, the rate of growth of dividends, is assumed to be a Gaussian sta-

tionary AR(1) process

xt = (1− ρ)x+ ρxt−1 + εt (2.6)

where ε is i.i.d. N (0, σ2) with |ρ| < 1. Market clearing requires that et = 1

so that ct = dt in equilibrium. Like in Burnside (1998), let yt denote the
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price–dividend ratio, yt = pt/dt. Then, condition for the household’s problem

can be shown to rewrite as

yt = βEt [exp(θxt+1)(1 + yt+1)] (2.7)

Burnside (1998) shows that the above equation admits an exact solution of

the form2

yt =
∞∑

i=1

βi exp [ai + bi(xt − x)] (2.8)

where

ai = θxi+
θ2σ2

2(1− ρ)2

[
i−

2ρ(1− ρi)

1− ρ
+
ρ2(1− ρ2i)

1− ρ2

]

and

bi =
θρ(1− ρi)

1− ρ

As can be seen from the definition of ai, σ— the volatility of the shock, directly

enters the decision rule,, therefore Burnside’s [1998] model does not make the

certainty equivalent hypothesis: risk matters for asset holdings decisions.

What happens then, if we now obtain a solution relying on a first order

Taylor approximation of the model?

First of all let us determine the deterministic steady state of the economy:

y? = β exp(θx?)(1 + y?)

x? = ρx? + (1− ρ)x

such that we get

y? =
β exp(θx?)

1− β exp(θx?)
(2.9)

x? = x (2.10)

The first order Taylor expansion of the Euler equation yields

ŷt = β exp(θx?)Et(ŷt+1) + θβ exp(θx?)Et(x̂t+1) (2.11)

2See appendix ?? for a detailed exposition of the solution.
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We actually recognize the simplest RE model we have been dealing with in

chapter 2 (yt = aEtyt+1+bxt) such that we may use a undetermined coefficient

approach and guess a decision rule of the form

ŷt = αx̂t

Plugging the guess in (2.11), we get

αx̂t = β exp(θx?)Et(αx̂t+1) + θβ exp(θx?)Et(x̂t+1)

taking expectations and identifying, we obtain

α =
θρβ exp(θx?)

(1− β exp(θx?))(1− ρβ exp(θx?))

such that the approximate decision rule may be written as

yt = y? + α(xt − x?)

We are now endowed to compute the approximation error we make using

linear approximation. As the model admits a closed–form solution, the accu-

racy of the approximation method can be directly checked against the “true”

decision rule. This is undertaken relying on the two following criteria

E1 = 100×
1

N

N∑

t=1

∣∣∣∣
yt − ỹt
yt

∣∣∣∣

and

E∞ = 100×max

{∣∣∣∣
yt − ỹt
yt

∣∣∣∣
}

where yt denotes the true solution to price–dividend ratio and ỹt is the ap-

proximation of the true solution by the method under study. E1 represents

the average relative error an agent makes using the approximation rather than

the true solution, while E∞ is the maximal relative error made using the ap-

proximation rather than the true solution. These criteria are evaluated over

the interval xt ∈ [x−∆σx, x+∆σx] where ∆ is selected such that we explore
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99.99% of the distribution of x. Table 2.1 reports E1 and E∞ for the differ-

ent cases. Our benchmark experiment amounts to considering the Mehra and

Prescott’s [1985] parameterization of the asset pricing model. We therefore

set the mean of the rate of growth of dividend to x = 0.0179, its persistence to

ρ = −0.139 and the volatility of the innovations to σ = 0.0348. These values

are consistent with the properties of consumption growth in annual data from

1889 to 1979. θ was set to -1.5, the value widely used in the literature, and β

to 0.95, which is standard for annual frequency. We then investigate the impli-

cations of changes in these parameters in terms of accuracy. In particular, we

study the implications of larger and lower impatience, higher volatility, larger

curvature of the utility function and more persistence in the rate of growth of

dividends.

Table 2.1: Accuracy check

Benchmark β=0.5 β=0.99 θ=-10 θ=-5 θ=0

E1 1.43 0.24 2.92 23.53 8.57 0.50
E∞ 1.46 0.26 2.94 24.47 8.85 0.51

θ=0.5 σ=0.001 σ=0.1 ρ=0 ρ=0.5 ρ=0.9

E1 0.29 0.01 11.70 1.57 5.52 37.50
E∞ 0.29 0.03 11.72 1.57 6.76 118.94

Note: The series defining the true solution was truncated after 800 terms,
as no significant improvement was found adding additional terms at the
machine accuracy. When exploring variations in ρ, the overall volatility
of the rate of growth of dividends was maintained to its benchmark level.

At a first glance at table 2.1, it appears that linear approximation can

only accommodate situations where the economy does not experiment high

volatility or large persistence of the growth of dividends, or where the utility

of individuals does not exhibit much curvature. This is for instance the case in

the Mehra and Prescott’s [1985] parameterization (benchmark) case as both

the average and maximal approximation error lie around 1.5%. But, as is

nowadays well–known, increases along one of the aforementioned dimension

yields lower accuracy of the linear approximation. For instance, increasing the
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volatility of the innovations of the rate of growth of dividends to σ=0.1 yields

approximation errors of almost 12% both in average and at the maximum, thus

indicating that the approximation performs particularly badly in this case.

This is even worse when the persistence of the exogenous process increases,

as ρ=0.9 yields an average approximation error of about 40% and a maximal

approximation of about 120%. This is also true for increases in the curvature

of the utility function (see row 4 and 5 of table 2.1).

Figure 2.1 sheds light on these results. It reports the exact solution to the

problem (grey line) and the linear approximation of the true solution (thin

black line). We consider a rather extreme situation where θ = −5, ρ = 0.5

and the volatility of the shock is preserved. As can be seen from figure 2.1,

Figure 2.1: Decision rule
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Note: This graph was obtained for θ = −5 and ρ = 0.5.

using a linear approximation induces two types of error:
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1. in terms of curvature,

2. in terms of level.

The first type of error is obvious, as the linear approximation is not intended

(as it cannot) to capture any curvature. The second type of error is related

to the fact that we are using a approximation about the deterministic steady

state. Therefore, the latter source of error is related to the risk component. In

fact, this may be understood in light of the ai terms in the exact solution which

include σ — the volatility of the innovations. In order to be sure that this

error is related to this component, we also report the exact solution when we

cut the overall volatility by 25% (thick dashed line). As can be seen the level

error tends to diminish dramatically, which indicates that the risk component

plays a major role in this as the average error is cut by 20% then (5% as

far as the maximal error is concerned). Hence, this suggests that the linear

approximation may only be accurate for low enough variability and curvature,

which prevents its use for studying structural breaks.

2.2 Non–Linear Dynamics and Asymmetries

We now consider another situation where the linear approximation may per-

form poorly. This situation is related to the existence of strong asymmetries

in decision rules or strong asymmetries in the objective functions the economic

agents have to optimize. In order to illustrate this situation, let us take the

problem of a firm that has to decide on employment and which faces asym-

metric adjustment costs. Asymmetric adjustment costs may be justified on

institutional grounds. We may argue for example that there exist laws in the

economy that render firings more costly than hirings.

We consider the case of a firm that has to decide on its level of employment.

The firm is infinitely lived and produces a good relying on a decreasing returns

to scale technology that essentially uses labor — another way to think of it

would be to assume that physical capital is a fixed–factor. This technology is
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represented by the constant returns–to–scale production function3

Yt = Ant with A > 0.

Using labor incurs two sources of cost

1. The standard payment for labor services: wtnt where wt is the real

wage, which positive sequence {wt}
∞
t=0 is taken as given by the firm and

is assumed to evolve as

wt = ρwt−1 + (1− ρ)w + εt

with εt ; U[−σw,σw] and
4 σw < (1− ρ)w.

2. A cost of adjusting labor, C(∆t) which satisfies

C(0) = 0, C ′(0) = 0, C ′′(∆) > 0

but that displays some asymmetries. An example of such a function is

depicted in figure (2.2)

Labor is then determined by maximizing the expected intertemporal profit

max
{nτ ,∆τ}∞τ=0

Et

∞∑

s=0

(
1

1 + r

)s

(f0nt+s − wt+snt+s − C(∆t+s))

subject to

nt = ∆t + nt−1 (2.12)

which yields the two first order conditions

λt = C′(∆t) (2.13)

λt = A− wt +
1

1 + r
Etλt+1 (2.14)

3This will enable us to obtain an analytical solution to the problem
4This assumption is imposed in order to guaranty the positivity of the real wage. Indeed

assume the economy experiences the worst shock in each and every period, then we would
have wt+j = ρjwt + (1 − ρj)w −

∑j

k=0
ρjσ which in the limit yields limj→∞ wt+j = w −

σ/(1− ρ). The positivity condition then corresponds to what we impose in the main text.

10



Figure 2.2: Asymmetric adjustment costs
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where λt is the lagrange multiplier associated to (2.12) The second equation

may be simply solved iterating to yield

λt =
∞∑

i=0

(
1

1 + r

)i

Et(f0 − wt+i)

Note that

Et(wt+j) = ρjwt + (1− ρj)w +

j−1∑

i=0

ρj
∫ σ

−σ

ε
dε

2σ
= ρjwt + (1− ρj)w

therefore

λt =
(1 + r)A

r
−

ρw

1 + r − ρ
−

1 + r

1 + r − ρ
wt

Then, ∆t is given by

∆t = δ(wt) ≡ C
′−1

(
(1 + r)A

r
−

ρw

1 + r − ρ
−

1 + r

1 + r − ρ
wt

)

and we have

nt = δ(wt) + nt−1
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Figure 2.3: Decision rule for ∆t

6

-

∆t

wtw

∆?

Since C′(.) may exhibit strong asymmetries, the decision rule may be extremely

non–linear too to yield a decision rule of the form we depict in figure (2.3). As

can be seen from the graph, the linear approximation would do a very poor

job, as any departure from the steady state level (∆? = 0) would create a large

error. In other words, and as should have been expected, strong non–linearities

forbid the use of linear approximations.

Beyond this point that may appear quite peculiar, since such important

non–linearities are barely encountered after all, there exists a large class of

models for which linear approximation would do a bad job: models with bind-

ing constraints that we now investigate.

2.3 Dealing with binding constraints

In this section, we will provide you with an example where linear approxima-

tion should not be used because the decision rules are not differentiable. This
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is the case when the agent faces possibly binding constraints. To illustrate it

we will develop a model of a consumer who is constrained on its borrowing in

the financial market.

We consider the case of a household who determines her consumption/saving

plans in order to maximize her lifetime expected utility, which is characterized

by the function: 5

Et

∞∑

τ=0

βτ

(
c1−σ
t+τ − 1

1− σ

)
with σ ∈ (0, 1) ∪ (1,∞) (2.15)

where 0 < β < 1 is a constant discount factor, c denotes the consumption

bundle. In each and every period, the household enters the period with a level

of asset at carried from the previous period, for which it receives an constant

real interest rate r. It also receives an endowment ωt, which may either be

thought of as something totally extrinsic to the economy or as wages. But

this is taken to be exogenous as we are not interested by its determination.

Therefore, this will be an exogenous stochastic process of the form

log(ωt) = ρ log(ωt−1) + (1− ρ) log(ω) + εt (2.16)

with εt ; N (0, σ2ω). These revenus are then used to consume and purchase

assets on the financial market. Therefore, the budget constraint in t is given

by

at+1 = (1 + r)at + ωt − ct (2.17)

In addition, the household is submitted to a borrowing contraint that states

that she cannot borrow

at+1 > 0

The first order conditions to this model may be obtained forming the

5Et(.) denotes mathematical conditional expectations. Expectations are conditional on
information available at the beginning of period t.
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Lagrangean to the system:

Lt = Et

∞∑

τ=0

βτ

(
c1−σ
t+τ − 1

1− σ
+ λt+τ ((1 + r)at+τ + ωt+τ − ct+τ − at+τ+1) + µt+τat+τ+1

)

where λt and µt respectively denote the Lagrangean multipliers associated to

the budget and the borrowing constraints. The first order conditions associ-

ated to the system are then

c−σ
t = λt (2.18)

λt = µt + β(1 + r)Etλt+1 (2.19)

together with

λt ((1 + r)at + ωt − ct − at+1) = 0 (2.20)

µtat+1 = 0 (2.21)

λt > 0 (2.22)

µt > 0 (2.23)

manipulating the system, we see that consumption is given by

c−σ
t = min

(
((1 + r)at + ωt)

−σ, β(1 + r)Etc
−σ
t+1

)

The decision rule of consumption is not differentiable in the point where assets

holdings are not sufficient to guaranty a positive net position on asset holdings:

((1 + r)at + ωt)
−σ = β(1 + r)Etc

−σ
t+1

Just to give you an idea of this phenomenon, we reported in figure 2.4 the

consumption decision rule for two different values of ωt as a function of cash–

on–hand — which is given by (1+r)at+ωt.
6 This non–differentiability implies

obviously that linear approximation cannot be useful in this case, as they are

not defined in the neighborhood of the point that makes the household switch

from the unconstrained to the constrained regime. Nevertheless, if we are

6We will see later on how these decision rules where computed.
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Figure 2.4: Consumption decision rule
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to consider an economy with tiny shocks and where the steady state lies in

the unconstrained regime, the linear approximation may be sufficient as the

decision rule is particularly smooth in this region because of consumption

smoothing).

We therefore need to investigate alternative methods, which however re-

quire some preliminaries
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