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A Solving the model

A.1 The Economy in the Pre–Technological Revolution

The households problem writes

max

∫
∞

0
e−ρtu(c(t))L(t)dt

s.t. 



Ḃ(t) + c(t)L(t) + Io(t) = wo(t)L(t) + rB(t) + qo(t)K(t)

K̇o(t) = Io(t) − δKo(t)
Io(t) > 0

since we have L̇(t) = nL(t), the problem, in intensive form rewrites

max

∫
∞

0
e−(ρ−n)tu(c(t))dt

s.t. 



ḃ(t) + c(t) + io(t) = wo(t) + (r − n)b(t) + qo(t)k(t)

k̇o(t) = io(t) − (δ + n)ko(t)
io(t) > 0

Forming the Hamiltonian of the system, and maximizing, we get the following set of first order

conditions

u′(c(t)) =λb(t) (A.1)

λb(t) =λk(t) + λi(t) (A.2)

λ̇b(t) =(ρ− r)λb(t) (A.3)

λ̇k(t) =(ρ+ δ)λk(t) − qo(t)λb(t) (A.4)

λi(t)io(t) =0 (A.5)

1



Technical Appendix 2

where λb(t), λk(t) and λi(t) respectively denote the shadow price of bonds, capital and the

lagrange multiplier associated with the irreversibility constraint. Finally, we have the following

transversality conditions

lim
t→∞

e−(r−n)tλb(t)b(t) = 0 and lim
t→∞

e−(r−n)tλk(t)ko(t) = 0

The firm maximizes profits, given by

Ko(t)αL(t)1−α − qo(t)Ko(t) − wo(t)L(t)

or, in intensive terms,

ko(t)α − qo(t)ko(t) − wo(t)

from which we get

qo(t) = αko(t)α−1 (A.6)

wo(t) = (1 − α)ko(t)α (A.7)

From (A.3), we see that either ρ > r and λb(t) diverges, or ρ < r and it converges toward zero,

or ρ = r and the economy jumps to its steady state level. The two first cases eventually violate

the transversality condition, such that only the third solution is economically meaningful. Then,

we have

qo = αkoα−1 (A.8)

wo = (1 − α)koα (A.9)

u′(c) =λb (A.10)

λb = λk + λi (A.11)

(r + δ)λk(t) = qoλb (A.12)

c+ io = wo + (r − n)b+ qoko (A.13)

io = (δ + n)ko (A.14)

yo = koα (A.15)

λiio =0 (A.16)

From (A.8), it is optimal for the economy to have ko > 0 in the steady state, otherwise since

qo −→ ∞ in that case, it would be optimal for the economy to build capital at an infinite pace.

Hence, from (A.14), we see that io > 0 so that λi = 0. Therefore, from (A.11) and (A.12), we

have

qo = r + δ
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such that from (A.8)

ko =

(
α

r + δ

) 1

1−α

Then, it is straightforward to obtain

yo =

(
α

r + δ

) α

1−α

From this equation, we see that
ẏo

yo
= 0

and is therefore independent from the rate of population growth.

A.2 The Economy during the Technological Revolution

The households problem writes

max

∫
∞

0
e−ρtu(c(t))L(t)dt

s.t.

Ḃ(t) + c(t)L(t) + In(t) = r B(t) + wo(t)(L(t) − S(t) −H(t)) + wn(t)S(t) + qo(t)Ko(t) + qn(t)Kn(t)

K̇o(t) = Io(t) − δKo(t)

K̇n(t) = In(t) − δKn(t)

Ṡ(t) = ΩH(t) + ns(t)L(t)

Io(t) > 0

In(t) > 0

which rewrites, in intensive terms, as

max

∫
∞

0
e−(ρ−n)tu(c(t))dt

s.t.

ḃ(t) + c(t) + in(t) + io(t) =rb(t) + qo(t)ko(t) + qn(t)kn(t)

+ wo(t)(1 − s(t) − h(t)) + wn(t)s(t) (A.17)

k̇o(t) =io(t) − (δ + n)ko(t) (A.18)

k̇n(t) =in(t) − (δ + n)kn(t) (A.19)

ṡ(t) =Ωh(t) − ns(t) + ns(t) (A.20)

io(t) >0 (A.21)

in(t) >0 (A.22)
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One can then form the following Hamiltonian

H =u(c(t)) + λb(t)

[
rb(t) + wo(t)(1 − s(t) − h(t)) + wn(t)s(t)+

qo(t)ko(t) + qn(t)kn(t) − c(t) − in(t) − io(t)

]

+ λko(t)(io(t) − (δ + n)ko(t)) + λkn(t)(in(t) − (δ + n)kn(t))

+ λs(t)(Ωh(t) − ns(t) + ns(t)) + λo

i (t)i
o(t) + λn

i (t)i
n(t)

from which it is clear that the labor market allocation problem reduces to the reduced Hamil-

tonian

H̃ = λb(t)(wo(t)(1 − s(t) − h(t)) + wn(t)s(t)) + λs(t)(Ωh(t) − ns(t) + ns(t))

or, renormalizing by λb(t)

Ĥ = wo(t)(1 − s(t) − h(t)) + wn(t)s(t) + λs(t)(Ωh(t) − ns(t))

which corresponds to the labor allocation problem reported in the body text.

The optimality conditions associated to the main problem are

u′(c(t)) = λb(t) (A.23)

λb(t) =λko(t) + λo

i (t) (A.24)

λb(t) =λkn(t) + λn

i (t) (A.25)

λ̇b(t) =(ρ− r)λb(t) (A.26)

λ̇ko(t) =(ρ+ δ)λko(t) − qo(t)λb(t) (A.27)

λ̇kn(t) =(ρ+ δ)λkn(t) − qn(t)λb(t) (A.28)

λb(t)wo(t) =Ωλs(t) (A.29)

λ̇s(t) = − λb(t)(wn(t) − wo(t)) + rλs(t) (A.30)

λo

i (t)i
o(t) =0 (A.31)

λn

i (t)i
n(t) =0 (A.32)

where λb(t), λko(t), λkn(t), λo

i (t) and λn

i (t) respectively denote the shadow price of bonds, capital

in the old and the new technology and the lagrange multiplier associated with the irreversibility

constraints on the old and new form of capital. Finally, we have the following transversality

conditions.

lim
t→∞

e−(r−n)tλb(t)b(t) = 0, lim
t→∞

e−(r−n)tλko(t)ko(t) = 0 and lim
t→∞

e−(r−n)tλkn(t)kn(t) = 0

The firm decides on its production plan maximizing profits, which are given by — in intensive

form

yo(t) + yn(t) − qo(t)ko(t) − wo(t)ℓo(t) − qn(t)kn(t) − wn(t)ℓn(t)
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This leads to the following set of optimality conditions, expressed in intensive forms

qo(t) =αko(t)α−1ℓo(t)1−α (A.33)

wo(t) =(1 − α)ko(t)αℓo(t)−α (A.34)

qn(t) =αkn(t)α−1((1 + γ)ℓn(t))1−α (A.35)

wn(t) =(1 − α)kn(t)α(1 + γ)1−αℓn(t)−α (A.36)

In addition, we have the labor market equilibrium conditions that state that

ℓo(t) =1 − h(t) − s(t) (A.37)

ℓs(t) =s(t) (A.38)

As in the pre–technological revolution, we have that r = ρ and the economy should jump on its

steady state level. Let us assume that this is indeed the case, such that the capital labor ratio

in the new technology is given by

kn

s
= (1 + γ)

(
α

r + δ

) 1

1−α

and the rental rate by

qn = r + δ

Hence, the wage rate in the new technology is given by

wn = (1 − α)(1 + γ)

(
α

r + δ

) α

1−α

Then, from (A.29) and (A.30) evaluated at steady state, we get

wo =
Ω

r + Ω
wn

such that
ko

1 − s− e
=

(
Ω(1 + γ)

r + Ω

) 1

α

(
α

r + δ

) 1

1−α

Then the rental rate in the old technology is given by

qo =

(
r + Ω

Ω(1 + γ)

) α

1−α

(r + δ)

But since, by assumption, Ωγ/r > 1, the term in front of (r + δ) is lower than 1. Therefore, we

have

qo < qn
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In other words, once the new technology starts to be adopted, it is not worth investing in the

old technology. Then io(t) = 0 ∀t > t⋆. Then, equation (A.18) implies that the capital in the

old technology evolves as

ko(t) = ko(t⋆)e−(δ+n)(t−t⋆), ∀t > t⋆ (A.39)

On the contrary, it is always worthwhile to invest in the new technology and we therefore have

in(t) > 0 and λn

i (t) = 0

Then (A.25), (A.26) and (A.28) imply that

qn(t) = r + δ

Using (A.35), we then obtain

kn(t) = (1 + γ)

(
α

r + δ

) 1

1−α

s(t) (A.40)

from which we get

wn(t) = (1 − α)(1 + γ)

(
α

r + δ

) α

1−α

= (1 − α)θ (A.41)

where θ ≡ (1 + γ)
(

α
r+δ

) α

1−α

.

The labor allocation problem is summarized by equations (A.29) and (A.30), which can be

combined to give

λ̇s(t) = −λb(t)wn(t) + (r + Ω)λs(t)

Since both λb(t) and wn(t) jump to their steady state value, this differential equation is easily

solved to give

λs(t) =
λb(t)wn(t)

r + Ω
(A.42)

which can then be used in (A.29) to yield

wo(t) =
Ω

r + Ω
wn(t) = (1 − α)

Ωθ

r + Ω
(A.43)

Then using (A.34) and (A.37), we obtain an expression for h(t)

h(t) = 1 − s(t) −

(
r + Ω

Ωθ

) 1

α

ko(t)

which rewrites

h(t) = 1 − s(t) −

(
r + Ω

Ωθ

) 1

α

ko(t⋆)−(δ+n)(t−t⋆) (A.44)

Plugging the latter expression in the law of motion of skilled labor (A.20), we face the following

differential equation

ṡ(t) + Ωs(t) = Ω

(
1 −

(
r + Ω

Ωθ

) 1

α

ko(t⋆)−(δ+n)(t−t⋆)

)
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where we made use of the fact that rational expectations imposes that s(t) = s(t) in equilibrium.

Then, the previous integral rewrites

∫ t

t⋆
eΩ(τ−t⋆) (ṡ(τ) + Ωs(τ)) dτ =

∫ t

t⋆
eΩ(τ−t⋆)Ω

(
1 −

(
r + Ω

Ωθ

) 1

α

ko(t⋆)e−(n+δ)(τ−t⋆)

)
dτ

we therefore have

eΩ(t−t⋆)(s(t) + s) = eΩ(t−t⋆)
− 1 −

Ω

Ω − δ − n

(
r + Ω

Ωθ

) 1

α

ko(t⋆)
(
e−(δ+n−Ω)(t−t⋆)

− 1
)

or

s(t) = 1 − e−Ω(t−t⋆)
−

Ω

Ω − δ − n

(
r + Ω

Ωθ

) 1

α

ko(t⋆)
(
e−(δ+n)(t−t⋆)

− e−Ω(t−t⋆)
)

where we assume s = 0. Then, plugging the definition of θ in this expression, we get

s(t) = 1 − e−Ω(t−t⋆)
−

Ω

Ω − δ − n

(
r + Ω

Ω(1 + γ)

) 1

α

(
r + δ

α

) 1

1−α

ko(t⋆)
(
e−(δ+n)(t−t⋆)

− e−Ω(t−t⋆)
)

This corresponds to the solution for s(t) reported in the body text.

It is then straightforward to recover the evolution of total output–per–worker, which is given by

y(t) = yo(t) + yn(t)

Output–per–worker in the old technology can be computed by noting that (A.34) implies

1 − h(t) − s(t) =

(
1 − α

wo(t)

) 1

α

ko(t) =

(
r + Ω

θΩ

) 1

α

ko(t)

Then plugging this result in the production function of the old technology, we have

yo(t) =

(
r + Ω

θΩ

) 1−α

α

ko(t)

or

yo(t) =

(
r + Ω

θΩ

) 1−α

α

ko(t⋆)e−(δ+n)(t−t⋆)

Likewise, using (A.40) in the production function of the new technology, we have

yn(t) = θs(t)

Therefore, total output–per–worker is given by

y(t) = θ+

(
r + Ω

Ωθ

) 1

α

θk(t⋆)

(
Ω

r + Ω
−

Ω

Ω − δ − n

)
e−(δ+n)(t−t⋆)+

(
Ω

Ω − δ − n

(
r + Ω

Ωθ

) 1

α

θk(t⋆) − θ

)
e−Ω(t−t⋆)
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Plugging the definition of θ in the last equation, we get

y(t) =(1 + γ)

(
α

r + δ

) α

1−α

+

(
r + Ω

Ω(1 + γ)

) 1

α (1 + γ)(r + δ)

α

(
Ω

r + Ω
−

Ω

Ω − δ − n

)
ko(t⋆)e−(δ+n)(t−t⋆)

+ (1 + γ)

(
α

r + δ

) α

1−α

(
Ω

Ω − δ − n

(
r + Ω

Ω(1 + γ)

) 1

α

(
r + δ

α

) 1

1−α

ko(t⋆) − 1

)
e−Ω(t−t⋆)

which corresponds to the law of motion of output per worker reported in the main text.

B Proof of proposition

Proof of Proposition 1: Since output per worker is independent from n, the proof is imme-

diate.

Proof of Proposition 2: The steady state output in the economy where only the old tech-

nology is available is given by

yo =

(
α

r + δ

) α

1−α

Let us introduce the new technology. The immediate effect of this introduction is that output

jumps to the new level

y(t⋆) =

(
r + Ω

Ω(1 + γ)

) 1−α

α

(
α

r + δ

) α

1−α

where we set ko(t⋆) to the steady state value of the economy with the old technology.

y(t⋆) actually rewrites

y(t⋆) =

(
r + Ω

Ω(1 + γ)

) 1−α

α

yo

Hence, since by assumption Ωγ/r > 1, we have

y(t⋆) < yo

q.e.d �

Proof of Proposition 3: In order to prove the first part of the proposition, it is convenient

to rewrite the dynamics of output–per–worker as

y(t) = ψ0 +

(
ψ1 −

ψ2

Ω − δ − n

)
e−(n+δ)(t−t⋆) +

(
ψ2

Ω − δ − n
− ψ0

)
e−Ω(t−t⋆)
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where

ψ0 =(1 + γ)

(
α

r + δ

) α

1−α

ψ1 =

(
r + Ω

Ω(1 + γ)

) 1

α (1 + γ)(r + δ)

α

Ω

r + Ω
ko(t⋆)

ψ2 =

(
r + Ω

Ω(1 + γ)

) 1

α (1 + γ)(r + δ)

α
Ωko(t⋆)

What we need to show is that the larger the rate of population growth the lower the growth

in output–per–worker at the beginning of the transition, which amounts to prove that the first

order derivative of the rate of growth of output per worker with respect to n is negative when t

is close to t⋆.

The rate of growth of output per worker writes as

ẏ(t)

y(t)
= −

(δ + n)
(
ψ1 −

ψ2

Ω−δ−n

)
e−(n+δ)(t−t⋆) + Ω

(
ψ2

Ω−δ−n
− ψ0

)
e−Ω(t−t⋆)

ψ0 +
(
ψ1 −

ψ2

Ω−δ−n

)
e−(n+δ)t +

(
ψ2

Ω−δ−n
− ψ0

)
e−Ω(t−t⋆)

= −
u(t, n)

v(t, n)

We therefore have that

∂ẏ(t)/y(t)

∂n
= −

∂u(t,n)
∂n

v(t, n) − ∂n(t,n)
∂n

u(t, n)

v(t, n)2

Straightforward calculation gives

∂u(t, n)

∂n
=

(
ψ1 −

ψ2

Ω − δ − n
−

ψ2(δ + n)

(Ω − δ − n)2
− (δ + n)t

(
ψ1 −

ψ2

Ω − δ − n

))
e−(n+δ)(t−t⋆)+

+
Ωψ2

(Ω − δ − n)2
e−Ω(t−t⋆)

∂v(t, n)

∂n
=

(
−

ψ2

(Ω − δ − n)2
− t

(
ψ1 −

ψ2

Ω − δ − n

))
e−(n+δ)(t−t⋆) +

ψ2

(Ω − δ − n)2
e−Ω(t−t⋆)

At the time of introduction of the new technology, t = t⋆, we therefore have u(t, n) = (δ+n)ψ1−

Ωψ0 + ψ2, v(t, n) = ψ1,
∂u(t, n)

∂n
= ψ1 and

∂v(t, n)

∂n
= 0. Hence, plugging these results into the

derivative of the rate of growth of output per worker evaluated at time t⋆, we get

∂ẏ(t)/y(t)

∂n

∣∣∣∣
t=t⋆

= −1

which proves the first part of the proposition.

The second part of the proposition is trivial, as the steady state of the economy does not depend

on the rate of population growth. To see this, note that as t goes to infinity, the capital in the

old technology, and therefore the quantity of output produced with the old technology, tends to

0. In contrast, the capital stock in the new technology tends to

k̃n = (1 + γ)

(
α

r + δ

) 1

1−α
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since s tends to 1. This capital stock, and therefore output in the new technology, is independent

from n. So no matter n, all economies will tend to the same limit. Since the rate of growth in

the high population growth economy is lower at the beginning of the transition than in the low

population growth economy, it has to be greater at some point to converge to the same steady

state.

q.e.d �

C Routinized Technology Model

The household side of the model is very similar to the very first model and des not desserve any

particular comments. Among the predictions of the model, it will be that once the new, rou-

tinized, technology is implemented, it is not worthwhile anymore to invest in the old technology,

such that the law of motion of the old capital will simply be given by (in intensive terms)

ko

x(t) = ko

x(t
⋆)e−(δ+n)(t−t⋆)

Before going into the differences between the non–routinized and the routinized technology, it

is useful to setup the invariant parts of the model. First note that the model is that of a small

open economy, which implies that at long as it is used by the firm, the capital stock can be

financed on international capital markets, such that its rental rate then equates ρ+ δ.

Final good sector: The firm in the final good sector maximizes profits so as to determine its

demand for each good x and z, at price px and pz.

maxx(t)ϕz(t)1−ϕ − px(t)x(t) − pz(t)z(t)

which leads to the standard demand function

px(t) =ϕ

(
x(t)

z(t)

)ϕ−1

(C.1)

pz(t) =(1 − ϕ)

(
x(t)

z(t)

)ϕ
(C.2)

C.1 The Model without the Routinized Technology

As implicit in the very beginning of the section, we will not present the household problem

which is very similar to that in the first model, and will rather focus on the firms problem. All

variables will be expressed in intensive terms.
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Intermediate good z: The firm determines its production plans maximizing its profit func-

tion

pz(t)Azkz(t)
α(1 − ℓox(t))

1−α
− qz(t)kz(t) − wz(t)(1 − ℓox(t))

which leads to the following demand functions.

αpz(t)Azkz(t)
α−1(1 − ℓox(t))

1−α =qz(t) (C.3)

(1 − α)pz(t)Azkz(t)
α(1 − ℓox(t))

−α =wz(t) (C.4)

Intermediate good x: The firm determines its production plans maximizing its profit func-

tion

px(t)k
o

x(t)
α

(
e

(
wo
x(t)

wz(t)

)
ℓox(t)

)1−α

− qox(t)ko

x(t) − wo

x(t)ℓ
o

x(t)

which leads to the following demand functions.

αpx(t)k
o

x(t)
α−1

(
e

(
wo
x(t)

wz(t)

)
ℓox(t)

)1−α

=qox(t) (C.5)

(1 − α)px(t)k
o

x(t)
αe

(
wo
x(t)

wz(t)

)1−α

ℓox(t)
−α =wo

x(t) (C.6)

(1 − α)px(t)k
o

x(t)
α 1

wz(t)
e′
(
wo
x(t)

wz(t)

)
e

(
wo
x(t)

wz(t)

)
−α

ℓox(t)
1−α =ℓox(t) (C.7)

From (C.6) and (C.7), we recover the standard Solow condition

wo
x(t)

wz(t)

e′
(
wo

x
(t)

wz(t)

)

e
(
wo

x
(t)

wz(t)

) = 1

which indicates that in equilibrium, we will have

wo

x(t) = γ⋆wz(t) with γ⋆ > 1 (C.8)

and that determines an optimal effort level, e⋆ = e(γ⋆).

Determination of output–per–worker From (C.3), (C.6), and (C.8), we have

ℓox(t) =
ϕ

ϕ+ (1 − ϕ)γ⋆

Then using the fact that both capital are in use, and that their rental rates are both equalized

to ρ+ δ, we have from (C.4) and (C.5), and making use of (C.1) and (C.2):

kz(t) =
1 − ϕ

ϕ
ko

x(t) (C.9)
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Let us then compute the ratio x(t)/z(t):

x(t)

z(t)
=

1

Az

(
ko
x(t)

kz(t)

)α( e⋆ℓox(t)

1 − ℓox(t)

)1−α

=
ϕ

Az(1 − ϕ)

(
e⋆

γ⋆

)1−α

which then implies that

px(t) =ϕϕ(1 − ϕ)1−ϕA1−ϕ
z

(
γ⋆

e⋆

)(1−α)(1−ϕ)

pz(t) =ϕϕ(1 − ϕ)1−ϕA1−ϕ
z

(
e⋆

γ⋆

)(1−α)ϕ

Then using (C.4) evaluated at qz(t) = r + δ, and plugging the definition of ℓox(t), w obtain

kz(t) = (1 − ϕ)

(
α

r + δ

) 1

1−α (
ϕϕ(1 − ϕ)1−ϕA1−ϕ

z

) 1

1−α

e⋆ϕγ⋆1−ϕ

ϕ+ (1 − ϕ)γ⋆

Then, using (C.9), we obtain

ko

x(t) = ϕ

(
α

r + δ

) 1

1−α (
ϕϕ(1 − ϕ)1−ϕA1−ϕ

z

) 1

1−α

e⋆ϕγ⋆1−ϕ

ϕ+ (1 − ϕ)γ⋆

Using these results in the definition of the production function for x and z and aggregating to

form y(t) = x(t)ϕz(t)1−ϕ, we get

y(t) =

(
α

r + δ

) α

1−α (
ϕϕ(1 − ϕ)1−ϕA1−ϕ

z

) α

1−α

e⋆ϕγ⋆1−ϕ

ϕ+ (1 − ϕ)γ⋆

C.2 The Model with the Routinized Technology

Intermediate good z: The firm determines its production plans maximizing its profit func-

tion

pz(t)Azkz(t)
α(1 − ℓox(t) − ℓnx(t))

1−α
− qz(t)kz(t) − wz(t)(1 − ℓox(t) − ℓnx(t))

which leads to the following demand functions.

αpz(t)Azkz(t)
α−1(1 − ℓox(t) − ℓnx(t))

1−α =qz(t) (C.10)

(1 − α)pz(t)Azkz(t)
α(1 − ℓox(t) − ℓnx(t))

−α =wz(t) (C.11)

Intermediate good x: The firm determines its production plans maximizing its profit func-

tion

px(t)

(
ko

x(t)
α

(
e

(
wo
x(t)

wz(t)

)
ℓox(t)

)1−α

+ kn

x(t)
α (ẽℓnx(t))

1−α

)
−qox(t)ko

x(t)−w
o

x(t)ℓ
o

x(t)−q
n

x(t)k
n

x(t)−w
n

x(t)ℓ
n

x(t)
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which leads to the following demand functions.

αpx(t)k
o

x(t)
α−1

(
e

(
wo
x(t)

wz(t)

)
ℓox(t)

)1−α

=qox(t) (C.12)

αpx(t)k
n

x(t)
α−1 (ẽℓnx(t))

1−α =qnx(t) (C.13)

(1 − α)px(t)k
o

x(t)
αe

(
wo
x(t)

wz(t)

)1−α

ℓox(t)
−α =wo

x(t) (C.14)

(1 − α)px(t)k
o

x(t)
α 1

wz(t)
e′
(
wo
x(t)

wz(t)

)
e

(
wo
x(t)

wz(t)

)
−α

ℓox(t)
1−α =ℓox(t) (C.15)

(1 − α)px(t)k
n

x(t)
αẽ1−αℓnx(t)

−α =wn

x(t) (C.16)

(C.17)

From (C.14) and (C.15), we recover the standard Solow condition

wo
x(t)

wz(t)

e′
(
wo

x
(t)

wz(t)

)

e
(
wo

x
(t)

wz(t)

) = 1

which indicates that in equilibrium, we will have

wo

x(t) = γ⋆wz(t) with γ⋆ > 1 (C.18)

and that determines an optimal effort level, e⋆ = e(γ⋆).

Determination of output–per–worker First of all note that since both the z and the x

sector endowed with the new technology are perfectly competitive, we have

wn

x(t) =wz(t) (C.19)

qnx(t) =qz(t) (C.20)

These two equations, (C.10) , (C.11), (C.13) and (C.16) trigger that

kn
x(t)

ℓnx(t)
=

kz(t)

1 − ℓox(t) − ℓnx(t)
(C.21)

Furthermore, from (C.14), (C.16) and (C.19)

ko
x(t)

ℓox(t)
=

(
γ⋆ẽ

e⋆

) 1

α e⋆

ẽ

kn
x(t)

ℓnx(t)
(C.22)

Using (C.21) in (C.19), we obtain

px(t) =
Az
ẽ1−α

pz(t)

Then using (C.1) and (C.2), we have

px(t)

pz(t)
=

ϕ

1 − ϕ

z(t)

x(t)
=

Az
ẽ1−α

⇐⇒
x(t)

z(t)
=

ϕ

1 − ϕ

ẽ1−α

Az
(C.23)
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from which we get

px(t) =ϕϕ(1 − ϕ)1−ϕ
(
Az
ẽ1−α

)1−ϕ

(C.24)

pz(t) =ϕϕ(1 − ϕ)1−ϕ
(
ẽ1−α

Az

)ϕ
(C.25)

Using the fact that as soon as the new technology is implemented, it is not while to invest in it,

we have

qnx(t) = r + δ

Then using (C.13), we obtain

kn

x(t) = px(t)
1

1−α

(
α

r + δ

) 1

1−α

ẽℓnx(t) (C.26)

Then using (C.22) and (C.21), we get

ko

x(t) =

(
γ⋆ẽ

e⋆

) 1

α

e⋆px(t)
1

1−α

(
α

r + δ

) 1

1−α

ℓox(t) (C.27)

kz(t) = Azpx(t)
1

1−α

(
α

r + δ

) 1

1−α

ẽα(1 − ℓnx(t) − ℓox(t)) (C.28)

Then using the production function in the new technology we get

xn(t) = px(t)
α

1−α

(
α

r + δ

) α

1−α

ẽℓnx(t) (C.29)

xo(t) = px(t)
α

1−α

(
α

r + δ

) α

1−α

γ⋆ẽℓox(t) (C.30)

z(t) = Azpx(t)
α

1−α

(
α

r + δ

) α

1−α

ẽα(1 − ℓnx(t) − ℓox(t)) (C.31)

Then, using these results together with

x(t) = xo(t) + xn(t) =
ϕ

1 − ϕ

ẽ1−α

Az
z(t)

we find

ℓnx(t) = ϕ− (ϕ+ γ⋆(1 − ϕ))ℓox(t) (C.32)

Therefore, plugging this result in (C.30) and (C.29), one gets

x(t) = ϕpx(t)
α

1−α

(
α

r + δ

) α

1−α

ẽ(1 + (γ⋆ − 1)ℓox(t))

Then since x(t) = ϕ
1−ϕ

ee1−α

Az

z(t), we have

y(t) =

(
1 − ϕ

ϕ

Az
ẽ1−α

)1−ϕ

x(t)
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such that

y(t) =

(
ϕϕ(1 − ϕ)1−ϕ

(
Az
ẽ1−α

)1−ϕ
)
px(t)

α

1−α

(
α

r + δ

) α

1−α

ẽ(1 + (γ⋆ − 1)ℓox(t))

We still have to determine the evolution of ℓox(t),which can be obtained from wo
x(t) = γ⋆wn

x(t),

which implies that

ℓox(t) =

(
r + δ

α

) 1

1−α

(
e⋆

γ⋆ẽ

) 1

α ẽ

e⋆
1

ẽϕ
ko
x(t)(

ϕϕ(1 − ϕ)1−ϕA1−ϕ
z

) 1

1−α

Then plugging this result in the definition of y(t) and using the definition of px(t) (equation

(C.24)) and the law of motion of ko
x(t), we obtain output per worker as a function of time:

y(t) =
(
ϕϕ(1 − ϕ)1−ϕA1−ϕ

z

) 1

1−α

(
α

r + δ

) α

1−α

ẽϕ +
γ⋆ − 1

γ⋆
r + δ

α

(
e⋆

γ⋆ẽ

) 1−α

α

ko

x(t
⋆)e−(δ+n)(t−t⋆)

Is it worth implementing the routinized technology? The answer to this question rests

on comparing the wage rate paid to workers in sector X with the old technology before and

after the introduction of the routinized technology (before and after t = t⋆).

wo
x(t) = w1 ≡ (1 − α)(ϕϕ(1 − ϕ)1−ϕA1−ϕ

z )
1

1−α

(
α
r+δ

) α

1−α

γ⋆1−ϕe⋆ϕ for t < t⋆

wo
x(t) = w2 ≡ (1 − α)(ϕϕ(1 − ϕ)1−ϕA1−ϕ

z )
1

1−α

(
α
r+δ

) α

1−α

(
γ⋆

e⋆

)1−ϕ
γ⋆ẽ for t > t⋆

It is then worth implementing the routinized technology if w2 > w1, or

γ⋆ẽ

e⋆
> 1

which is the assumption we placed on ẽ.

Labor productivity growth: Note that, after the introduction of the routinized technology,

output–per–worker can be rewritten as

y(t) = ψ0 + ψ1e
−(δ+n)(t−t⋆)

with ψ0 =
(
ϕϕ(1 − ϕ)1−ϕA1−α

z

) 1

1−α

(
α
r+δ

) α

1−α

ẽϕ > 0 and ψ1 = γ⋆
−1
γ⋆

r+δ
α

(
e⋆

γ⋆ee) 1−α

α

ko
x(t

⋆) > 0.

The labor productivity growth is given by

ẏ(t)

y(t)
= −

ψ1(δ + n)e−(δ+n)(t−t⋆)

ψ0 + ψ1e−(δ+n)(t−t⋆)
= −

u(t, n)

v(t, n)

We therefore have that

∂ẏ(t)/y(t)

∂n
= −

∂u(t,n)
∂n

v(t, n) − ∂n(t,n)
∂n

u(t, n)

v(t, n)2
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Straightforward calculation gives

∂u(t, n)

∂n
=ψ1e

−(δ+n)(t−t⋆)
− ψ1(δ + n)(t− t⋆)e−(δ+n)(t−t⋆)

∂v(t, n)

∂n
= − ψ1(t− t⋆)e−(δ+n)(t−t⋆)

At the time of introduction of the new technology, t = t⋆, we therefore have u(t, n) = ψ1(δ+n),

v(t, n) = ψ0 +ψ1,
∂u(t, n)

∂n
= ψ1(δ+n) and

∂v(t, n)

∂n
= 0. Hence, plugging these results into the

derivative of the rate of growth of output per worker evaluated at time t⋆, we get

∂ẏ(t)/y(t)

∂n

∣∣∣∣
t=t⋆

= −
ψ1

ψ0 + ψ1
< 0

Hence, at the time of introduction of the routinized technology, the economy with the largest

rate of population growth experiences lower growth in labor productivity.

As for the previous model, the steady state of the economy does not depend on the rate of

population growth. Since the rate of growth in the high population growth economy is lower at

the beginning of the transition than in the low population growth economy, it has to be greater

at some point to catch up and converge to the same steady state.


